Advanced Object-Oriented
Programming

Exceptions

Dr. Kulwadee Somboonviwat
International College, KMITL
kskulwad@kmitl.ac.th

mailto:kskulwad@kmitl.ac.th

Exceptions

Definition

Catching Exceptions
Propagating Exceptions
Throwing Exceptions
Classification of Exceptions

Proesrammer-defined Exceptions

Definition

* An exception represents an error condition that
can occur during the normal course of program
execution.

* When an exception occurs, or is thrown, the
normal sequence of flow Is terminated. The
exception-handling routine is then executed,
we say the thrown exception is caught.

Not Catching Exceptions

claoss ExceptionsSamplel {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
SyEtem.Dut.pPinE{”Eﬂter integer:");
Lnt number = scanner.nextInt();

Error message for invalid input

Enter integer:-1.235
Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor(Scanner. java:9@9)
at java.util.Scanner.next(Scanner.java:153@)
at java.util.Scanner.nextInt(Scanner.java:Z216@)
at java.util.Scanner.nextInt(Scanner.java:2119)
at ExceptionsSamplel.main(ExceptionsSamplel.java:7)

Catching an Exception

System.out.print (prompt);

p—

try {

A

age = scanner.nextInt();
(##: } catch (InputMismatchException e) |

catch System.out.println (

+ }:

—

try-catch control flow

Exception

i try {

<t ~-1>
t-stmt-1 Assume <t-stmt-3=
<t-stmt-2> throws an exception.

Les SE-stmt-3>

<t-stmt-4> Remaining
. statements in the

try block is skipped.

<t-stmt-n>

:: } catch (Exception e) {
- <c-stmt-1> Statements in the
catch block are
executed.

<Cc—stmt-m=

. } And the execution
"1-=:next stmt> ——continues to the

next statement

N

1}

try {

S ct-stmb-13

<t-stmt-4>

:it—stmt—nb

<c—-stmt-1>

<c—stmt—-m> \

1<next stmbt>

<t—stmt—2% All statements in
the try block are
<t-stmt-3>

executed.

} catch (Exception e) {

Statements in the
catch block are

skipped.

Getting Exceptions Information

* There are two methods we can call to get

iInformation about the thrown exception:
* getMessage
* printStackTrace

try {

} catch (InputMismatchException e) {
scanner .next () ;

System.ocut.println{e.getMessage())

e.printStackTrace ()} ;

Multiple catch Blocks

Exception

try

<t-stmt-1>
l{t—stmt—E}
e =t-stmt-3>

S [«ct-stmt-4>

<t-stmt-n=>

Assume <t-stmt-3=
throws an exception
and <catch-block-3=
is the matching block.

Remaining
statements in the
try block is skipped.

<catch-block-1>
<catch-block-2> Statements

I <catch-block-3> —

in the
matching

<catch-block-m>

catch block
are executed.

}
1 <next stmt>

i
g o ¥

'

try {

<t-stmt-1>

ct—stmt—-2> All statements in
the try block are
executed and throw
<t-stmt-4> no exceptions.

<t-stmt-3>

: <t-stmt-n>

<catch-block-1>
All catch

<catch-block-2> blocks are

<catch-block-3> skipped.

<catch-block-m>

| }

<next stmt>

The finally Block

« There are situations where we need to take
certain actions regardless of whether an
exception is thrown or not.

* We place statements that must be executed
regardless of exceptions in the finally block.

try-catch-finally control flow

Exception : No Excepti

Assume <t-stmt-i>

|t - E
ry { throws an exception =¥ |
1 <t-stmi-1> and <catch-block-i> is

<t-stmt-1>

. e s the matching block.
<t-stmt-1> <t-stmt-1>

<t-stmt-n> ¥ <t-stmt-n=>
} 41
<catch-block-1> : <catch-block-1>
| <catch-block-i> : <catch-block-i>
f |<catch-block-m> 2| |<catch-block-m>
|} finally { |} finally {

e . finally block is e finally block is
) executed. } executed.

“next stmt> “next stmt>

try-with-resources statement

« Java SE 7 provides a shortcut to the code pattern:

open a resource
try

work with the resource

3
finally

{

close the resource

}

Try-with-resource

try (Resource res = ...)

{
}

work with res

When the try block exits,
then res.close() is called
automatically.

import java.util.*;
import java.io.”;
public class NoTryWithSample {
public static void main(String[] args) {
Scanner in = null;
PrintWriter out = null;

try {

try {
in = new Scanner(new FilelnputStream("words.txt"));

out = new PrintWriter("out.txt");
while (in.hasNext())
out.println(in.next().toUpperCase());
}
catch (Exception e) {
System.err.println(e.getMessage());
}

3
finally {

try {
in.close();
out.close();
3
catch (Exception e) {
System.err.println(e.getMessage());
3

import java.util.*;
import java.io.”;

class TryWithSample {
public static void main(String[] args) {

try
(Scanner in = new Scanner(new FilelnputStream(“"words.txt"));
PrintWriter out = new PrintWriter("out.txt"))

{
while (in.hasNext())

out.println(in.next().toUpperCase());
3

catch (FileNotFoundException e)

{
e.printStackTrace();
3

}
3

Propagating Exceptions

* Instead of catching a thrown exception by using the try-
catch statement, we can propagate the thrown exception

back to the caller of our method.
* The method header includes the reserved word throws.

public 1int getlAge() throws InputMismatchException {
1int age = scanner.nextInt();

return age;

Throwing Exceptions

We can write a method that throws an exception directly,
l.e., this method is the origin of the exception.

Use the throw reserved to create a new instance of the
Exception or its subclasses.

The method header includes the reserved word throws.

public void doWork(int num) throws Exception {

1f (num != wval) throw new Exception | |

Sample call sequence

Method A -~ Method B ~__— Method C ~_»Method D
try | o B ltzy i 8

Bi): — Ciyes — o if (cond)
} catch (Exception e} } catch (Exception)i 3 throw

new Exceptioni);

I

propagator

catcher propagator

> O 0O

Stack Trace

Classification of Exceptions

* All types of thrown errors are instances of the
Throwable class or its subclasses.

e Serious errors are represented by instances of
the Error class or its subclasses.

« EXxceptional cases that common applications
should handle are represented by instances of
the Exception class or its subclasses.

Throwable Hierarchy

 There are over 60 classes in the hierarchy.

Checked vs. Runtime

There are two types of exceptions:
®* Checked.
®* Unchecked.

A checked exception Is an exception that is checked
at compile time.

All other exceptions are unchecked, or runtime,
exceptions. As the name suggests, they are
detected only at runtime.

Exception Handling Rules

* When calling a method that can throw checked exceptions
* use the try-catch statement and place the call in the
try block, or

* modify the method header to include the appropriate
throws clause.

* When calling a method that can throw runtime exceptions,
* jtis optional to use the try-catch statement or modify
the method header to include a throws clause.

Handling Checked Exceptions

Caller A (Catcher)

void callerA() {

try { P
doWork()i—m0oH 0 | doWork throws Exception

} catch (Exception e) {| ——— public void doWork

o ol throws Exception {
}

throw new Exception();

Caller B (Propagator)

,

void callerB()

throws Exception {

doWork ():————*”/////

Handling Runtime Exceptions

Caller A (Catcher)

void callerA() {
try {
doWork();

} catch (

b maRceantion. o) T \fo“’ork throws RuntimeException
’ public void doWork {

} .
throw new

Caller B (Propagator) RuntimeException();

void callerB8() throws) DI
RuntimeException {

dowork () ; —-—/
}

Caller C (Propagator)

Notice that CallerCis a
propagator implicitly.

void callerc() {
S This is the most common
doWork(); style for runtime exceptions.

Programmer-defined Exceptions

Using the standard exception classes, we can use the
getMessage method to retrieve the error message.

By defining our own exception class, we can pack more
useful information

closs AgelnputException extends Exception {
private static final String DEFAULT_MESSAGE = "input out of bounds";
private int value;
public AgeInputException(int input) {
th1s(DEFAULT_MESSAGE, input);

}

public AgeInputException(String msg, int input) {
super{msg);
value = input;

}

public tnt value() { return value; }

