
Advanced Object-Oriented

Programming

Dr. Kulwadee Somboonviwat
International College, KMITL

kskulwad@kmitl.ac.th

Exceptions

mailto:kskulwad@kmitl.ac.th

Exceptions

• Definition

• Catching Exceptions

• Propagating Exceptions

• Throwing Exceptions

• Classification of Exceptions

• Programmer-defined Exceptions

Definition

• An exception represents an error condition that

can occur during the normal course of program

execution.

• When an exception occurs, or is thrown, the

normal sequence of flow is terminated. The

exception-handling routine is then executed;
we say the thrown exception is caught.

Not Catching Exceptions

Error message for invalid input

Catching an Exception

try-catch control flow

Getting Exceptions Information
• There are two methods we can call to get

information about the thrown exception:
• getMessage

• printStackTrace

Multiple catch Blocks

The finally Block

• There are situations where we need to take

certain actions regardless of whether an

exception is thrown or not.

• We place statements that must be executed

regardless of exceptions in the finally block.

try-catch-finally control flow

try-with-resources statement

• Java SE 7 provides a shortcut to the code pattern:

 open a resource

 try

 {

 work with the resource

 }

 finally

 {

 close the resource

 }

try (Resource res = …)

{

 work with res

}

Try-with-resource

When the try block exits,
then res.close() is called
automatically.

import java.util.*;
import java.io.*;
public class NoTryWithSample {
 public static void main(String[] args) {
 Scanner in = null;
 PrintWriter out = null;
 try {
 try {
 in = new Scanner(new FileInputStream("words.txt"));
 out = new PrintWriter("out.txt");
 while (in.hasNext())
 out.println(in.next().toUpperCase());
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 }
 }
 finally {
 try {
 in.close();
 out.close();
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 }
 }
 }
}

import java.util.*;
import java.io.*;

class TryWithSample {
 public static void main(String[] args) {
 try
 (Scanner in = new Scanner(new FileInputStream("words.txt"));
 PrintWriter out = new PrintWriter("out.txt"))
 {
 while (in.hasNext())
 out.println(in.next().toUpperCase());
 }
 catch (FileNotFoundException e)
 {
 e.printStackTrace();
 }
 }
}

Propagating Exceptions

• Instead of catching a thrown exception by using the try-

catch statement, we can propagate the thrown exception

back to the caller of our method.

• The method header includes the reserved word throws.

Throwing Exceptions

• We can write a method that throws an exception directly,

i.e., this method is the origin of the exception.

• Use the throw reserved to create a new instance of the

Exception or its subclasses.

• The method header includes the reserved word throws.

Sample call sequence

Classification of Exceptions

• All types of thrown errors are instances of the

Throwable class or its subclasses.

• Serious errors are represented by instances of

the Error class or its subclasses.

• Exceptional cases that common applications

should handle are represented by instances of

the Exception class or its subclasses.

Throwable Hierarchy

• There are over 60 classes in the hierarchy.

Checked vs. Runtime

• There are two types of exceptions:
• Checked.

• Unchecked.

• A checked exception is an exception that is checked

at compile time.

• All other exceptions are unchecked, or runtime,

exceptions. As the name suggests, they are

detected only at runtime.

Exception Handling Rules

• When calling a method that can throw checked exceptions

• use the try-catch statement and place the call in the

try block, or

• modify the method header to include the appropriate

throws clause.

• When calling a method that can throw runtime exceptions,

• it is optional to use the try-catch statement or modify

the method header to include a throws clause.

Handling Checked Exceptions

Handling Runtime Exceptions

Programmer-defined Exceptions

• Using the standard exception classes, we can use the

getMessage method to retrieve the error message.

• By defining our own exception class, we can pack more

useful information

