ACM Tutorial: Divide-and-Conquer

Dr. Ukrit Watchareeruetai

Department of Engineering and Technology, International College, KMITL

Contents

- Introduction to divide-and-conquer
- Binary search
- Mergesort
- When not to use divide-and-conquer

Introduction to divide-andconquer

Concept of divide-and-conquer

- Divide an instance of a problem into two or more smaller instances
- The smaller instances are usually instances of the original problem.
- If the solutions to the smaller instances can be obtained readily, the solution to the original instance can be obtained by combining these solutions.

Concept of divide-and-conquer

- If the smaller instances are still too large to be solved, they can be divide into still smaller instances.
- The process of dividing the instances continues until they are so small that a solution is readily obtainable.

Concept of divide-and-conquer

- Divide-and-conquer is a top-down approach
- The solution to the top-level instance of a problem is obtained by going down and obtaining solutions to the smaller instances.
- This method is used by recursion routines.
- But we can sometimes create a more efficient iterative version of the algorithm.

Binary search

Algorithm 1.5: Binary Search

Problem: Determine whether x is in the sorted array S of n keys.
Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from 1 to n, a key x.
Outputs: location, the location of x in $S(0$ if x is not in S).
void binsearch (int n,
const keytype $S[]$, keytype x , index\& location)
\{
index low, high, mid;
low $=1$; high $=n$;
location $=0$;
while (low < = high \&\& location $==0$) $\{$
mid $=\langle$ (low + high)/2」;
if ($\mathrm{x}==\mathrm{S}[\mathrm{mid}]$)
location $=$ mid;
else if ($\mathrm{x}<\mathrm{S}[\mathrm{mid}]$)
high $=$ mid - 1;
else
low = mid + 1;
\}
\}

Iterative version of binary search

Binary search

- Array must be sorted.
- Compare a query value x with the middle item m
- If $x=m$, the solution is found.
- If not, the array is divided into subarrays
- If x is less than m, ignore the right subarray.
- If x is greater than m, ignore the left subarray.
- Repeat this process until x is found or all data exhaust

Binary search

- If x equals the middle item, quit. Otherwise:

1. Divide the array into subarrays. If x is smaller, choose the left subarray. If x is larger, choose the right subarray.
2. Conquer (solve) the subarray by determining whether x is in that subarray. Unless the subarray is sufficient small, use recursion.
3. Obtain the solution to the array from the solution to the subarray

Binary search

Suppose $x=18$ and we have the following array:

Middle item

1. Divide the array: Because $x<25$, we need to search
101213141820.
2. Conquer the subarray by determining whether x is in the subarray. This is accomplished by recursively dividing the subarray. The solution is:

Yes, x is in the subarray.
3. Obtain the solution to the array from the solution to the subarray:

Yes, x is in the array.

Binary search

- When developing a recursive algorithm, we need to:
- Develop a way to obtain the solution to an instance from the solution to one or more smaller instances.
- Determine the terminal condition(s) that the smaller instance(s) is (are) approaching.
- Determine the solution in the case of the terminal condition(s).

Algorithm 2.1: Binary Search (Recursive)

Problem: Determine whether x is in the sorted array S of size n.
Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from 1 to n, a key x.

Outputs: location, the location of x in $S(0$ if x is not in S).

```
index location (index low, index high)
    {
    index mid;
    if (low > high)
        return 0;
    else {
            mid = [(low + high)/2];
        if (x == S[mid])
                            return mid
            else if (x < S[mid])
                            return location(low, mid - 1);
            else
                        return location(mid + 1, high);
        }
    }
```


Mergesort

Mergesort

- Perform sorting by using two-way merging
- For example, to sort an array of 16 items
- Divide it into two subarrays, each of size 8. Sort them and then merge them to produce sorted array.
- Again, to sort each subarray of size 8, we can divide them into subarrays of size 4, sort them, and then merge them to produce sorted subarrays of size 8 .
- Eventually, the size of subarrays will become 1 and it is trivially sorted.

Mergesort

- Given an array of size n, merge sort involves the following steps:

1. Divide the array into two subarrays each with n/2 items.
2. Conquer (solve) each subarray by sorting it. Unless the array is sufficiently small, use recursion to do this.
3. Combine the solutions to the subarrays by merging them into a single sorted array.

Mergesort (Example)

- Suppose the array contains these numbers in sequence: $27 \quad 10 \quad 12 \quad 2025 \quad 1315 \quad 22$.

1. Divide the array:
$27 \quad 10 \quad 12 \quad 20$ and $25 \quad 131522$.
2. Sort each subarray:

10 $12 \quad 20 \quad 27$ and 13152225.
3. Merge the subarrays:

$$
\begin{array}{llllllll}
10 & 12 & 13 & 15 & 20 & 22 & 25 & 27 .
\end{array}
$$

Algorithm 2.2: Mergesort

Problem: Sort n keys in nondecreasing sequence.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

```
void mergesort (int n, keytype S[])
    if (n>1) {
        const int h=[n/2],m=n-h;
        keytype U[1 ..h], V[1 ..m];
        copy S[1] through S[h] to U[1] through U[h];
        copy S[h+1] through S[n] to V[1] through V[m];
        mergesort(h, U);
        mergesort(m, V);
        merge (h, m, U, V, S);
    }
}
```


Algorithm 2.3: Merge

Problem: Merge two sorted arrays into one sorted array.
Inputs: positive integers h and m, array of sorted keys U indexed from 1 to h, array of sorted keys V indexed from 1 to m.

Outputs: an array S indexed from 1 to $h+m$ containing the keys in U and V in a single sorted array
void merge (int h, int m, const keytype $U[]$,
const keytype V[],
keytype S[])
\{
index $i, j, k ;$
$i=1 ; j=1 ; k=1 ;$
while ($i<=h \& \& j<=m$) \{ if (U[i] < V[j]) \{ $S[k]=U[i] ;$
i++;
\}
else\{
$S[k]=V[j] ;$
$j^{++} ;$
\}
k++;
\}
if (i>h)
copy $V[j]$ through $V[m]$ to $S[k]$ through $S[h+m]$;
else
copy U[i] through U[h] to $S[k]$ through $S[h+m]$;
$\}$

Table 2.1: An example of merging two arrays U and V into one array S [*]

k	U	V	S (Resutl)
1	10122027	13152225	10
2	10122027	13152225	1012
3	10122027	13152225	101213
4	10122027	13152225	10121315
5	10122027	13152225	1012131520
6	10122027	13152225	101213152022
7	10122027	$131522 \mathbf{2 5}$	10121315202225
-	10122027	13152225	1012131520222527 - Final values
[*] Items compared are in boldface. Items just exchanged appear in squares.			

When not to use divide-andconquer

When not to use divide-and-conquer

- If possible, we should avoid divide-and-conquer in the following two cases:
- An instance of size n is divided into two or more instances each almost of size n.
- Lead to exponential-time algorithm
- An instance of size n is divided into almost n instances of size n / c, where c is a constant.
- Lead to a $n^{\theta(g n)}$ algorithm

