
ACM Tutorial:
Divide-and-Conquer

Reference textbook: R. Napolitan and K. Naimipour, Foundations of Algorithms (4th ed.), Jones and Bartlett, 2011

Divide-and-Conquer

Dr. Ukrit Watchareeruetai

Department of Engineering and Technology,

International College, KMITL

Contents

• Introduction to divide-and-conquer

• Binary search

International College, KMITL: Gateway to Professional Success in the International Arena

2

• Binary search

• Mergesort

• When not to use divide-and-conquer

International College, KMITL: Gateway to Professional Success in the International Arena

3

Concept of divide-and-conquer

• Divide an instance of a problem into two or
more smaller instances

International College, KMITL: Gateway to Professional Success in the International Arena

4

• The smaller instances are usually instances of
the original problem.

• If the solutions to the smaller instances can be
obtained readily, the solution to the original
instance can be obtained by combining these
solutions.

Concept of divide-and-conquer

• If the smaller instances are still too large
to be solved, they can be divide into still
smaller instances.

International College, KMITL: Gateway to Professional Success in the International Arena

5

smaller instances.

• The process of dividing the instances
continues until they are so small that a
solution is readily obtainable.

Concept of divide-and-conquer

• Divide-and-conquer is a top-down approach

▫ The solution to the top-level instance of a problem
is obtained by going down and obtaining solutions

International College, KMITL: Gateway to Professional Success in the International Arena

6

is obtained by going down and obtaining solutions
to the smaller instances.

▫ This method is used by recursion routines.

▫ But we can sometimes create a more efficient
iterative version of the algorithm.

International College, KMITL: Gateway to Professional Success in the International Arena

7

International College, KMITL: Gateway to Professional Success in the International Arena

8

�Iterative version
of binary search

Binary search

• Array must be sorted.

• Compare a query value x
with the middle item m

▫ If x = m, the solution is

International College, KMITL: Gateway to Professional Success in the International Arena

9

▫ If x = m, the solution is
found.

▫ If not, the array is divided
into subarrays

� If x is less than m, ignore
the right subarray.

� If x is greater than m,
ignore the left subarray.

• Repeat this process until x is
found or all data exhaust

Binary search
• If x equals the middle item,

quit. Otherwise:

1. Divide the array into
subarrays. If x is smaller,
choose the left subarray. If x

International College, KMITL: Gateway to Professional Success in the International Arena

10

choose the left subarray. If x
is larger, choose the right
subarray.

2. Conquer (solve) the subarray
by determining whether x is
in that subarray. Unless the
subarray is sufficient small,
use recursion.

3. Obtain the solution to the
array from the solution to the
subarray

Binary search

International College, KMITL: Gateway to Professional Success in the International Arena

11

Binary search

• When developing a recursive algorithm, we need
to:

▫ Develop a way to obtain the solution to an

International College, KMITL: Gateway to Professional Success in the International Arena

12

▫ Develop a way to obtain the solution to an
instance from the solution to one or more smaller
instances.

▫ Determine the terminal condition(s) that the
smaller instance(s) is (are) approaching.

▫ Determine the solution in the case of the terminal
condition(s).

International College, KMITL: Gateway to Professional Success in the International Arena

13

Recursive
version

International College, KMITL: Gateway to Professional Success in the International Arena

14

Mergesort

• Perform sorting by using two-way merging
• For example, to sort an array of 16 items

▫ Divide it into two subarrays, each of size 8. Sort

International College, KMITL: Gateway to Professional Success in the International Arena

15

▫ Divide it into two subarrays, each of size 8. Sort
them and then merge them to produce sorted
array.

▫ Again, to sort each subarray of size 8, we can
divide them into subarrays of size 4, sort them,
and then merge them to produce sorted subarrays
of size 8.

▫ Eventually, the size of subarrays will become 1 and
it is trivially sorted.

Mergesort

• Given an array of size n, merge sort involves the
following steps:

1. Divide the array into two subarrays each with

International College, KMITL: Gateway to Professional Success in the International Arena

16

1. Divide the array into two subarrays each with
n/2 items.

2. Conquer (solve) each subarray by sorting it.
Unless the array is sufficiently small, use
recursion to do this.

3. Combine the solutions to the subarrays by
merging them into a single sorted array.

Mergesort (Example)

• Suppose the array contains these numbers in
sequence: 27 10 12 20 25 13 15 22.

International College, KMITL: Gateway to Professional Success in the International Arena

17

1. Divide the array:

27 10 12 20 and 25 13 15 22.

2. Sort each subarray:

10 12 20 27 and 13 15 22 25.

3. Merge the subarrays:

10 12 13 15 20 22 25 27.

International College, KMITL: Gateway to Professional Success in the International Arena

18

International College, KMITL: Gateway to Professional Success in the International Arena

19

Floor functionFloor function

International College, KMITL: Gateway to Professional Success in the International Arena

20

International College, KMITL: Gateway to Professional Success in the International Arena

21

International College, KMITL: Gateway to Professional Success in the International Arena

22

When not to use divide-and-conquer

• If possible, we should avoid divide-and-conquer
in the following two cases:

International College, KMITL: Gateway to Professional Success in the International Arena

23

▫ An instance of size n is divided into two or more
instances each almost of size n.

� Lead to exponential-time algorithm

▫ An instance of size n is divided into almost n
instances of size n/c, where c is a constant.
� Lead to a nſ(lg n) algorithm

