05/09/2012

Computer Networks and
Communication

Lecture 5

Transport Layer,
UDP Protocol,
Reliable Data Transfer

© Isara Anantavrasilp

Transport Layer

* Resides between the application
ayer and the network layer

* Provides for logical communication
oetween processes on different
nosts

* Packets in transport layer are called
segments

* TCP and UDP operate in this layer

05/09/2012 © Isara Anantavrasilp

Transport Layer (2)

 There can be many processes running on a single
host

* Hence, if a process P, in host A wants to
communicate with a process P, in host B

— P, has to know both IP address of B and the port
number associated to P,

— P, has to know IP address and port number of P, as
well

* Process-to-process data delivery is the main
service of transport layer

— Multiplex / Demultiplex

Process-to-Process Communication

Application
Pl
Socket

Transp

Networ

Link

Physica

Application
P2 P3
Socket T Socket

nsp

" Socket

etwor

Application
P4

nsport

Link

etwork

Host A

05/09/2012

hysica

Link

Host B

© Isara Anantavrasilp

hysical

Host C

Process-to-Process Communication (2)

Application Application
| P, P, | | P, P, {
Socket T Socket Socket 7 Socket

ranspo ranspo

Physical Physical

Host A Host B

05/09/2012 © Isara Anantavrasilp 5

The 5-Tuple

* Process-to-process communication can be
distinguished by

— Source IP (SrclP) € Specified in network-layer header

— Source port (SrcPort)
— Destination IP (DstIP)
— Destination Port (DstPort)
— Transport protocol (e.g. TCP and UDP)

* Packet sender and receiver can identify each
other using these attributes

 We call the these attributes together the 5-tuple

Specified in transport-layer header

Source and Destination Ports

Application Application Application
P, | | P, Py | P,
Socket Socket ~ Socket " Socket
Transp nsp nsport
Networ etwor etwork
Link srcPort: 6000 Link srcPort: 4000 Link
dstPort: 3000 dstPort: 9000
Physica hysica hysical
Host A srcPort: 3000 Host B srcPort: 9000 Host C
dstPort: 6000 dstPort: 4000
05/09/2012 © Isara Anantavrasilp

Well-Known Ports

* With port numbers, we can specify which process
we want to communicate with

 But how do we know which port numbers are
associated to which processes in the distant
host?

* To this end, some important applications have
specific port numbers assigned to them

— We call those port numbers well-known ports

— Standardized in RFC 1700 by Internet Assigned
Numbers Authority (IANA)

05/09/2012 © Isara Anantavrasilp 8

Well-Known Ports (2)

Highest port number is: 65535 (Why?)

Standardized well-known ports are ranged from ports
0to 1024

Well known ports example:

— 7: ECHO

— 20 and 21: FTP data and control respectively

— 22: SSH

— 53: DNS

— 80: HTTP

— 110: POP3

— 547: DHCP Server

There are other well-known ports above 1024 too but
they are not specified in the standard

Data Transfer with UDP

Application can control packet-sending speed
— No congestion control
— No packet-retransmission

Fast

— No handshaking / connection establishment
— Small protocol header

Provides simple error-detection

Example applications:

— DNS

— Videoconference software
— First-person shooting games

UDP Header

<— 16 bit >€ 16 bit —>
srcPort dstPort
Length of the entire
segment (header + > length checksum €—__ Used for error-
payload) checking
payload

 Header size: 8 byte

* Payload size:
* Min: O byte
 Max: 65,527 bytes

05/09/2012 © Isara Anantavrasilp 11

UDP Checksum

* Checksum is a simple error-detection mechanism
* |n UDP, checksum is optional

Sender Receiver
* Divide the entire segment into a Compute the sum of the received
sequence of 16-bit words segment
 Compute the sum of all words Compare the computed checksum
— Add the words to each other and the one in the checksum field
e Perform 1s complement of the sum — They are equal: No error

* If the sum is OXFFFF, then ignore the — Not equal: Error detected

1’s complement (which is 0x0000)

e The resultis then stored in the
checksum field

05/09/2012

UDP Checksum (2)

1110011001100110

1101010101010101

0000000000001000

1110011001100110
1101010101010101

@101110111@111@11

> 1

1011101110111100

© Isara Anantavrasilp

16 bit word

16 bit word

sum

wraparound

13

UDP Checksum (3)

* Exercise: Compute the sum

1110011001100110 16 bit word
1101010101010101 16 bit word
@101110111@111011 sum
> 1 wraparound
1011101110111100 sum
©000000000001000 16 bit word
1011101111000100 sum
0100010000111 011 checksum

1’s compliment /

05/09/2012 © Isara Anantavrasilp

Checking the Checksum

1110011001100110

1101010101010101

0000000000001000

0100010000111011

 What is the sum of all words (with wraparound)?:

— 1110011001100110
— 1101010101010101 }Segmentwords

— 0000000000001000

— 0100010000111011 <— Checksum

* Itis:1111111111111111 Why?

* With checksum, can we detect all possible errors?
e Can UDP detect packet lost or out-of-order?
« UDP Checksum is optional. Why it is so?

05/09/2012 © Isara Anantavrasilp

15

Reliable Data Transfer

Transport-layer protocol ——
has to transform unreliable

Sending Receiving _
channel to a reliable one

process process

1

7

a

Reliable protocol Reliable protocol
(sending side) (receiving side)

Y

Transport |Application
Transport |Application

A

The processes trust that
the transport-layer service
is always reliable

Je

and lower
N>

Network
and lower
Network

Provided service Service implementation

 We are going to build a reliable data transfer protocol (rdt)

05/09/2012 © Isara Anantavrasilp 16

Reliable Data Transfer (2)

rdt send() : called from above, deliver data () : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer A
rdt send() \L deliver data()

o)

vy Reliable protocol Reliable protocol

E (sending side) (receiving side)

I_

udt send()$ $ rdt _rcv()

(. <

o 3

= O

D T

< &

—udt send() : called by rdt, — rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

05/09/2012 © Isara Anantavrasilp 17

Reliable Data Transfer (3)

We will incrementally develop sender and receiver sides of
the rdt protocol

The data transfer will be unidirectional
— Application data will be transferred one-way
— Control data will be transferred in both direction

We will use finite state machine (FSM) to model the
operations in both sides

event causing state transition

actions taken on state transition

actions

rdt 1.0

 Reliable transfer over a reliable channel

 Underlying channel is reliable
— No errors
— No packet loss
e Separate FSM for sender and receiver
— Sender keep sending the data
— Receiver keep receiving data

“4A\Nait for rdt_rcv(packet)
call from extract (packet,data)

below deliver data(data)

Wait for " “\rdt_send(data)
call from
above

packet=make pkt(data)
udt send(packet)

sender receiver

rdt 2.0

* |In reality, underlying channel is not reliable
— We can use the checksum to detect errors

* Error recovery

— Acknowledgement (ACK): The receiver tells the
sender that the packet is correctly received (OK)

— Negative ACK (NACK): The receiver informs that the
packet had errors

— Sender retransmit the packet after hearing NACK
* rdt 2.0 improvements over rdt 1.0

— Error detection (at the receiver side)
— Receiver feedback (ACK / NACK)

rdt 2.0 - FSM

rdt send(data)

snkpkt = make pkt(data,checksum)
udt send(sndpkt)

rdt rcv(rcvpkt)
&& 1sNAK(rcvpkt)

Wait for
call from
above

udt send(sndpkt)

rdt rcv(rcvpkt)&&
isACK(rcvpkt)

A
Sender retransmit when

NACK is received. If ACK
is received, it moves on
to the next pkt

sender

rdt rcv(rcvpkt) &&
corrupt (rcvpkt)

udt send(NAK)

Wait for
call from
below,

rdt rcv(rcvpkt) &&
notcorrupt (rcvpkt)

extract (rcvpkt,data)
deliver data(data)
udt send(ACK)

receiver

rdt 2.0 — FSM without Errors

rdt send(data)

snkpkt = make pkt(data,checksum) rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt (rcvpkt)

- udt_send (NAK)
~ . rdt rcv(rcvpkt) ()
Wait for && 1sNAK(rcvpkt) RN
call from "/ Wait for

above send (sndpkt)

call from
below,

rdt rcv(rcvpkt)&é&
isACK(rcvpkt)
<

rdt rcv(rcvpkt) &&
notcorrupt (rcvpkt)

A

extract (rcvpkt,data)
deliver data(data)
udt send(ACK)

sender receiver

05/09/2012 © Isara Anantavrasilp 22

rdt 2.0 — FSM with Errors

rdt send(data)

snkpkt = make pkt(data,checksum) rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt send(NAK)

rdt rcv(rcvpkt)
&& isNAK(rcvpk

Wait for
call from
above

Wait for
call from
below,

udt send(sndpkt)

rdt rcv(rcvpkt)&é&

isACK(rcvpkt
< (pXt) rdt rcv(rcvpkt) &&

notcorrupt (rcvpkt)

A

extract (rcvpkt,data)
deliver data(data)
udt send(ACK)

sender receiver

05/09/2012 © Isara Anantavrasilp 23

rdt 2.0 - Discussion

* Sender always wait for feedback from receiver

— Feedback: ACK/NACK
— Stop-and-wait protocol

* Receiver detects errors using checksum

* Problems:

— What if ACK/NACK got lost or corrupted?

— Can the sender still know if the packet is received
correctly?

— Any idea?

05/09/2012 © Isara Anantavrasilp 24

rdt 2.0 — Discussion (2)

* Possible solutions:
— The sender keeps asking for ACK
* Receiver might get confused

— Use extra info (more than checksum), so that the
sender can reconstruct correct feedback

e Extra overhead

— Sender simply resend the packet if the ACK is not
received

* Duplicate: Receiver might not know if the resent
packet is a retransmitted packet or a new packet

* Another solution: Add sequence numbers into
data packets

rdt 2.1 — FSM: Sender Side

rdt send(data)

sndpkt = make pkt(0,data,checksum)
udt send(sndpkt)

rdt rcv(rcvpkt) &&
(corrupt (rcvpkt) ||
isNAK(rcvpkt))

call 0 from

udt send(sndpkt)

rdt _rcv(rcvpkt) &&
notcorrupt (rcvpkt) &&

rdt rcv(rcvpkt)
isACK(rcvpkt)

&& notcorrupt(rcvpkt)
&& 1sACK(rcvpkt)

A \
A
Wait for Wait for
call 1 from

rdt rcv(rcvpkt) && NAK 1/ » above
(corrupt (rcvpkt) ||
isNAK(rcvpkt)) rdt_send(data)
udt_send (sndpkt) sndpkt = make_ pkt(1l,data,checksum)

udt send(sndpkt)

05/09/2012 © Isara Anantavrasilp

26

rdt 2.1 — FSM: Receiver Side

rdt rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has seqO(rcvpkt)

extract (rcvpkt,data)

deliver data(data)
rdt_rcv(rcvpkt) && \ sndpkt = make pkt(ACK, chksum)
corrupt (rcvpkt) \ udt send(sndpkt) rdt rcv(rcvpkt) &&
\ corrupt (rcvpkt)
sndpkt=make pkt (NAK,chksum)\
udt send(sndpkt)

sndpkt=make pkt (NAK,chksum)
udt send(sndpkt)

rdt rcv(rcvpkt)&&
not corrupt(rcvpkt)é&
has seql(rcvpkt)

rdt rcv(rcvpkt) &&
notcorrupt (rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make pkt(ACK,chksum) sndpkt=make pkt(ACK, chksum)

udt send(sndpkt) udt send(sndpkt)
rdt rcv(rcvpkt) && -

notcorrupt (rcvpkt) &&
has seql (rcvpkt)

extract (rcvpkt,data)
deliver data(data)

sndpkt = make pkt(ACK, chksum)
udt send(sndpkt)

05/09/2012 © Isara Anantavrasilp 27

rdt 2.1 — Discussion

* Sender * Receiver
— Added seqg# to packets — Must check if the
— Two sequence numbers, received packet is
0 and 1 will suffice. Why? duplicate
— Must check if received — State specifies expected

ACK/NAK is corrupted

— Number of states are
twice more than rdt 2.0

— State must remember
whether current packet
has O or 1 seq#

packet seq#

— Receiver cannot know if
the ACK/NACK is
received correctly by the
sender

rdt 2.1 — Discussion (2)

* Sender always wait for feedback from receiver
— Feedback: ACK/NACK

* Receiver detects errors using checksum

* Receiver determines if the incoming packet is a

retransmission or a new packet using sequence
number

— Solution to duplicate-packets problem
* Problem:

— Sending both NACK and ACK brings additional
overhead

— What if the ACK or NACK is lost along the way?

05/09/2012 Isara Anantavrasilp 29

rdt 2.2 — NAK-free Protocol

Same functionality as rdt 2.1 but using only ACKs
The receiver adds seq# to ACK, indicating which
packet is corresponding to this ACK

— e.g.: ACK 1 is an acknowledgement for packet with
seq# 1

Duplicate ACK (e.g. “ACK 1” twice) would result
in the same action as “NAK”

Like rdt 2.1, it does not work properly if the
underlying channel can lose packets

rdt 3.0

* Underlying channel may cause errors and can
lose packets

— Checksum: Detect errors

— Retransmission: correct errors

— Seq#: Detect duplicates

— None of those can detect packet loss

 What would you do if N'Toey does not return
your mails?
— Your mail might be lost?
— Her mail might be lost?
— You should get lost?

Handling Packet Loss

Sender waits for “reasonable” amount of time for
ACK

— The transmitted packet might be lost
— The ACK might be lost

t retransmits if no ACK arrives in this time

f the packet or ACK is delayed, the retransmitted
nacket would be duplicate

— Seqg# already handles this

— Receiver must specify seq# in the ACK

This approach requires countdown timer

rdt 3.0 — FSM: Sender Side

\

rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt)&&
notcorrupt (rcvpkt) &&
isACK(rcvpkt, 1)

stop timer

timeout
udt send(sndpkt)

start timer <:~/

rdt rcv(rcvpkt)&&
(corrupt (rcvpkt) | |
isACK(rcvpkt,0))

rdt send(data)

sndpkt = make pkt(0,data,checksum)
\ udt send(sndpkt)
\ start timer

Wait for
call Ofrom
above

A

rdt rcv(rcvpkt)&&
(corrupt (rcvpkt) | |
isACK(rcvpkt,1l))

A

timeout

udt send(sndpkt)
start timer

rdt rcv(rcvpkt)&é&
notcorrupt (rcvpkt)&&
isACK(rcvpkt,0)

stop timer

Wait for
call 1 from

above
/
rdt send(data) A

rdt rcv(rcvpkt)

sndpkt = make pkt(1l,data,checksum)
udt send(sndpkt)
start timer

rdt 3.0 in Action

sender receiver
send pkt0|~
= rcv pkt0
send ACKO
rcv ACKOf&™
send pktl \
rcvglgf(::[Kl
= sen
rcv ACK1J€
send pkt0 \
rcv pktO
—|send ACKO
|

no packet loss

05/09/2012 © Isara Anantavrasilp

34

rdt 3.0 with Packet Loss

sender receiver
send pktO|=
= rcv pkt0
send ACKO
rc\é| ACkKi)("
sen t
=p T X (loss)
i
1
i
timeout
resend pktl
send ACK1
rcv ACK1 €
send pke0——__
rcv pktO
send ACKO
&

with packet loss

05/09/2012 © Isara Anantavrasilp

rdt 3.0 with ACK Loss

sender receiver
send pktO]=
= rcv gkto
send ACKO
rcv ACKOf&™
send pktl

timeout
resend pktl

rcv ACK1
send pktO

\r oy pktl

X (loss) /

&

T

I

<Tvith ACK loss

05/09/2012

© Isara Anantavrasilp

send ACK1

rcv pktl
(detect duplicate)

send ACK1

rcv pktO
send ACKO

36

rdt 3.0 with Premature Timeout

sender receiver
send pktO|=
= rcv gktO
send ACKO
rcv ACKOf&™
send pktl

WA/

timeout
resend pktl

rcv ACK1
send pktO

rcv pktl ACK1 is sent twice
send ACKl\The second one is

ignored by the sender

rcv pktl
(detect duplicate
send ACK1

rcv pktO
send ACKO

with too short time out

05/09/2012

© lsara Anantavrasilp

37

rdt 3.0 — Discussion

rdt 3.0 would work in general
It detects error, duplicates and packet loss

However, it is extremely slow
— Stop-and-wait protocol

— Every time it is going to send a packet, it has to
wait for the ACK of previous packet

— Round trip time (RTT) between sent packet and
the ACK is the culprit

Solution: Pipelining

