Computer Networks and
Communication

Lecture 7
TCP Protocol

14/09/2012

TCP

* Point-to-Point
— one sender, one
receiver

e Reliable and in-order
byte stream
— No message boundaries
* Pipelined
— Both sender and
receiver have buffers

— TCP congestion and
flow control set the
window size

* Full duplex service

— Bidirectional data
transfer

e Connection-oriented
— Three-way handshaking
 Flow controlled

— Sender will not
overflow receiver

Sending
process

Socket

v

TCP (2)

TCP
send buffer

Receiving
process

¢

Socket

|

14/09/2012

Max length of a segment is specified
by Maximum Segment Size (MSS)

TCP
receive buffer

Important Characteristics of TCP

e TCPis a full-duplex protocol

— Processes on both sides can send data to each other at the
same time within the same connection

— When host B wants to send an ACK to host A, it attaches
the ACK into one of the packets which is sent to A

— That is, the ACKs and data from B to A are sent in the same
packet

 Seg# used in TCP is the byte-stream number of the first
byte in the segment

15t segment 2" segment

A A

| | |
Byte :
stream: J

MSS = 1,000 bytes

TCP Header

16 bit ><€ 16 bit >
Counting by
srcPort (16bit) dstPort (16 bit) bytes of data
(not segment
Sequence number (32 bit) number!)
number bytes that

Piggyback acknowledgement (32 bit) the receiver i

Header | Reserved(6
length bit)

_ Willing to accept

Flags (6bit) Window (16 bit) &L

Checksum (16 bit) Urgent data pointer (16 bit)

/ Options (variable\‘quth)

/ Payload (variable Ieng\t\)

TP flags: | URG | ACK | PSH | RST | SYN | FIN

14/09/2012 5

TCP Sequence Numbers and ACKs

* Seq#: Byte stream
number of the first
byte in segment’s
data

* ACKs: Seqg# of the
next byte expected
from the other side

14/09/2012

Send
“dinner?”

7 bytes

ACKs the data
(“yes”) back

.| Send ACK of

“dinner?”
along with
new data
“ves”

\

3 bytes

TCP Retransmission Scenarios

Host A Host B Host A Host B

92 timeout —>|

<—timeout——>

Sendbase
= 100
SendBase
= 120

92 timeout —*— Seq

Seqg=

SendBase
= 100 SendBase_L

= 120

lost ACK scenario premature timeout
14/09/2012 7

TCP Retransmission Scenarios (2)

Host A Host B
4 €9=9)
~~Vtes day
SG‘q:1OO 0
bytes data
Q
A0

£l X

N 0SS

& AP

3 M
SendBase
= 120

Cumulative ACK scenario
14/09/2012

TCP Connection Establishment

 TCP is a connection-oriented protocol

— The “connection” has to be established before the data
can be exchanged

* Three way handshake
— Step 1: Client sends TCP SYN segment to the server
* Specifies initial Seqg#
* No data
— Step 2: Server receives SYN, replies with SYNACK
* SYNACK is not just an ACK, but the SYN from server side
* Server allocates receive buffer

— Step 3: Client receives SYNACK, replies with ACK segment,
which may contain data

TCP Connection Establishment (2)

client SYN flag is set to 1 server

«

SYN=y
» S€Q=cligns ;
nt Injt S
AISO called \

SYNACK >~

Three way handshake

14/09/2012

TCP Connection Closing

* Step 1.

— Client closes
connection by
sending TCP FIN
control segment

* Step 2:

— Server receives FIN,

replies with ACK

— Server closes the
connection, send FIN

14/09/2012

client

FIN

server

TCP Connection Closing

Step 3:
— Client receives FIN, replies with ACK

— Client enters “timed wait” and will
respond with ACK if FINs are
received

Step 4:
— Server receives ACK, sends nothing
— Connection is closed

Note: Server has to send FIN because
TCP allows you to close only half of the
connection (only one-way)

14/09/2012

client

<—timed wait —>

FIN

N

ACK

server

Flow and Congestion Control

 TCP regulates the data-
sending rate based on two
factors

— Capability of the receiver:
How much and how fast
can the receiver process
the data: Flow Control

— Capability of the network:
How much data can be
sent through the network:
Congestion Control

sender

Transmission
network

receiver

14/09/2012 13

TCP Flow Control

* The TCP flow control is designed

to prevent the sender to send S8ading Receiving
process process

the data too fast than the

receiver’s processing capability Socket Socket

— The receive buffer is full ' [

— Overflow

* The receiver constantly informs TCP | | TCP

the sender how much buffer it send buffer receive buffer
has left

 The sender throttles the sending
rate accordingly

TCP Flow Control (2)

At the receiver side

lastByteRcvd — lastByteRead

=< rcvBuffer

rWindow = rcvBuffer —
[LastByteRcvd-lastByteRead]

rWindow is sent to the sender in the
window field in the TCP header

The sender makes sure that

lastByteSent—lastByteAck
=< rWindow

lastByteSent—lastByteAck is
the amount of data in transit

14/09/2012

<«— rcvBuffer — 3

<«—TrWindow—>

Data to apps

t

Space left in buffer

— _
)

Data from IP

15

TCP Congestion Control

* Congestion:

— Too many sources sending too much data too fast for the
network to handle

— The same as in traffic in Bangkok

* Consequence of congestion:
— Packet lost (buffer overflow at routers)
— Long delay (queuing in the router buffers)

* Congestion control is set of methods which try to
prevent network congestion

— It is designed to prevent the sender to send too much data
than the network can handle

— It is not the same as flow control!

TCP Congestion Control (2)

Sending rate is limited by congestion window, denoted by
cWindow,

— lastByteSent—lastByteAck =< cWindow

Note that the equation above is similar to that of riwindow

* lastByteSent—lastByteAck =< rWindow

Thus, the sender can send the data at the rate such that

— lastByteSent—lastByteAck =< min {rWindow,cWindow}

The is rwindow specified by the receiver but for the cwindow,
the sender has to determine by itself.

Determining Sending Rate

 TCP tries to find a sending rate such that:
— It is not too fast to congest the network
— It is not too slow to underutilize the network capacity

 TCP follows these principles:

— Packet lost implies congestion, thus sending rate
should be decreased

— Arriving ACKs means the network is delivering the
packets perfectly, the sending rate can be increased

— Bandwidth probing: The sender keeps increasing the
sending rate until packet loss occurs, then back off
from that rate and begins to probe again

Determining Sending Rate (2)

* Sending-rate determination consists of three
phases:

— Slow Start: Quickly increase the sending rate. If

congestion occurs, switch to congestion avoidance
mode

— Congestion Avoidance: Fine-tuning the sending
rate

— Fast Recovery: When congestion occurs, it helps
maintaining the sending rate from falling back

14/09/2012 19

Slow Start

* Slow start is a bandwidth probing
technique used by TCP

* When connection begins,
increase rate exponentially until
first loss event:

— Starts cWindow at 1 MSS
— Increase cWindow for every ACK
received

* I|nitial rate is slow but ramps up
exponentially fast

14/09/2012

Host A Host B
t oNe segment
- —
o
l t
—

Mseqments

time

20

Slow Start (2)

* The exponential growth cannot continue forever
— |t stops at a threshold: ssthreshold

— After ssthreshold is reached, the cWindow
increases linearly, instead of exponentially

— This linear growth step is called congestion avoidance

« ssthreshold is changed every time congestion
(loss event) occurs

— If a loss event occurs at cWwindow = k, TCP sets
ssthreshold tok/?2

— That is, ssthreshold is set to half the size of
cWindow which causes the congestion

Congestion Avoidance

On entry to congestion avoidance state, cWwindow is
approx. half its value when congestion was last
encountered
Here, TCP keeps increasing the cWwindow linearly until:
— Timeout occurs:
* Reset the cWindow to 1MSS
* Set ssthreshold to cWindow/ 2
e Switch to Slow Start again
— Three duplicate ACKs occur:
* Set ssthreshold to cWindow/?2
* Enters Fast Recovery mode

Congestion Window (in Segments)

14/09/2012

44
40
36
32
28
24
20
16
12

Congestion Avoidance (2)

Timeout

~

— Congestion Avoidance

ssthreshold

I ssthreshold
I — Slow Start

1 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22 23 24

Transmission Round

23

Fast Recovery

* TCP enters fast recovery when 3 duplicate
ACKs are encountered

* This indicates that the network is still capable
of data transmission

* |n this state, instead of resetting the
cWindow back to 1 MSS, is cWindow set to
the new ssthreshold

Congestion Window (in Segments)

44
40
36
32
28
24
20
16
12

Fast Recovery (2)

3 Duplicate ACKs
ssthreshold
Congestion Avoidance
ssthreshold
— Slow Start Fast Recovery
—

1 2 3 45 6 7 8 9 101112 13 14151617 18 19 20 21 22 23 24

Transmission Round

