
Big Data Analytics

Isara Anantavrasilp

Lecture 6: Installing Hadoop Distribution

1© Isara Anantavrasilp

Hadoop Distribution

• Hadoop distribution: Cloudera QuickStart

• Platform: Virtual Box

• System Requirements

– 64-bit host OS and a virtualization that support
64-bit guest OS

– RAM for VM: 4 GB

– HDD: 20 GB

© Isara Anantavrasilp 2

Installing Cloudera QuickStart

• Download size: ~5.5 GB

• Download links

– https://www.virtualbox.org/wiki/Downloads
Select package corresponding to your host system

– https://downloads.cloudera.com/demo_vm/virtu
albox/cloudera-quickstart-vm-5.13.0-0-
virtualbox.zip

© Isara Anantavrasilp 3

https://www.virtualbox.org/wiki/Downloads
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-5.13.0-0-virtualbox.zip

VirtualBox Download

© Isara Anantavrasilp 4

Installing Cloudera QuickStart

• Install VirtualBox

• Unzip Cloudera VM

• Start VirtualBox

• Import Appliance (Virtual Machine)

• Launch Cloudera VM

© Isara Anantavrasilp 5

Start Virtual Box

© Isara Anantavrasilp 6

Import Appliance

© Isara Anantavrasilp 7

Setting Up the VM

© Isara Anantavrasilp 8

Select Bidirectional
to share clipboard

Setting Up the VM

© Isara Anantavrasilp 9

8GB of RAM is
recommended

Setting Up the VM

© Isara Anantavrasilp 10

At least 2 CPUs is
recommended

Launch Cloudera VM

© Isara Anantavrasilp 11

Launch Cloudera VM

© Isara Anantavrasilp 12

Login: cloudera Password: cloudera

Launch Cloudera VM

© Isara Anantavrasilp 13

Troubleshooting

• The VM does not start:
AMD-V is disabled in the BIOS (or by

the host OS) (VERR_SVM_DISABLED).

Make sure that your BIOS allows virtualization

• VM freezes when starting:
It does not freeze, just wait until it finishes
loading

© Isara Anantavrasilp 14

Let’s check if we can run Hadoop

• Open terminal

• Type in the following command
hadoop jar /usr/lib/hadoop-

mapreduce/hadoop-mapreduce-examples.jar

• It should list available commands

© Isara Anantavrasilp 15

Word Count

• Now let’s try
hadoop jar /usr/lib/hadoop-

mapreduce/hadoop-mapreduce-

examples.jar wordcount

• Result
Usage: wordcount <in> [<in>...] <out>

[cloudera@quickstart ~]$

• This is word-counting example

• Let’s count some words

© Isara Anantavrasilp 16

Word Files

• The Complete Works of William Shakespeare
https://ocw.mit.edu/ans7870/6/6.006/s08/lec
turenotes/files/t8.shakespeare.txt

• The Project Gutenberg EBook of The
Adventures of Sherlock Holmes
http://norvig.com/big.txt

© Isara Anantavrasilp 17

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
http://norvig.com/big.txt

Download and Save

• Open web browser

• Type in or paste the URL

© Isara Anantavrasilp 18

Download and Save

• After the page is loaded,
save the file

• Default destination is
~/Download

© Isara Anantavrasilp 19

Let’s count the words

• Open terminal and type
hadoop jar /usr/lib/hadoop-

mapreduce/hadoop-mapreduce-

examples.jar wordcount big.txt out

• It will fail
InvalidInputException: Input path

does not exist:

• This is because the file is not yet in HDFS!

© Isara Anantavrasilp 20

Local File System and HDFS

• Hadoop does not store everything in HDFS
• Map results are normally stored in nodes’ local

file systems
– Map results are intermediate results which will be

sent to reduce task later
– They do not need redundancy provided by HDFS
– If a map node fails, Hadoop task manager simply

resend the task to another node

• Hadoop HDFS stores
– Input data: We must put our data into HDFS first
– Reduce output data: Result of the entire process

© Isara Anantavrasilp 21

Copy the data into HDFS

• Open the terminal and go to Downloads
directory
cd Downloads/

• List the files with ls or ls –al

• You should see your downloaded files
[cloudera@quickstart Downloads]$ ls

big.txt t8.shakespeare.txt

© Isara Anantavrasilp 22

Copy the data into HDFS

• Copy the file from local file system to HDFS
hadoop fs -copyFromLocal big.txt

• Check whether the file is copied correctly
hadoop fs –ls

• Now, let’s try to copy big.txt to HDFS again

© Isara Anantavrasilp 23

Command:
File system
commands

Command Option:
Copy file from local FS to HDFS

Other HDFS Command Options

• List the files in current directory
hadoop fs –ls

• Copy files within HDFS
hadoop fs -cp big.txt big2.txt

• Copy files back to local file system
hadoop fs -copyToLocal big2.txt

• Remove files in HDFS
hadoop fs -rm big2.txt

• Show all command options
hadoop fs

© Isara Anantavrasilp 24

Let’s count the words (again)

• Open terminal and type
hadoop jar /usr/lib/hadoop-

mapreduce/hadoop-mapreduce-

examples.jar wordcount big.txt out

• This time it should run

• While it is running, Hadoop will show progress
including completed map and reduce tasks

© Isara Anantavrasilp 25

Copy the result to local FS

• The output is stored in directory out in HDFS

• You can list the contents inside the directory with:
hadoop fs –ls out

• Then copy the result file back with
hadoop fs –copyToLocal out/part-r-
00000

• Now see the contents of the result:
more part-r-00000

© Isara Anantavrasilp 26

What have we done so far?

• We copied files to and from HDFS

• We have run some HDFS file commands

• We have executed MapReduce program

– The data to be operated is on HDFS

– But the program is on the local file system

– WordCount is written in Java but it can be any
language

© Isara Anantavrasilp 27

Prepare Compiling Environment

• Most of environment parameters are already set in
Cloudera QuickStart, to check type:
printenv

• The following environment should be there:
JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera

PATH=/usr/java/jdk1.7.0_67-cloudera/bin

• What we have to do is to set is
export

HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

© Isara Anantavrasilp 28

Compiling Word Count

• To compile:
hadoop com.sun.tools.javac.Main

WordCount.java

• The result will be multiple class files

• We have to pack them into one JAR file
jar cf wc.jar WordCount*.class

• Result will be a JAR file: wc.jar

© Isara Anantavrasilp 29

Running Word Count

• Counting word in the big.txt file
hadoop jar wc.jar WordCount big.txt

out2

• You should have the same result as previous
example

• The result is stored in out2 directory

• Let’s copy to local file system
hadoop fs -copyToLocal out2

© Isara Anantavrasilp 30

Hadoop Jobs

• Hadoop MapReduce process is categorized as
a job

• A job consists of tasks

– Map tasks

– Reduce tasks

– Tasks are scheduled by YARN

– If a task fails, it will be automatically re-scheduled
in another node

© Isara Anantavrasilp 31

Input Splits

• MapReduce separates entire data into smaller
chunks or splits and feed into map tasks (and
later to reduce tasks)

• Splits allow the tasks to be distributed among
nodes

• Best size of each splits is the size of a HDFS block
– Too small, too much scheduling overhead
– Too large, one split is separated into many nodes

• Hadoop tries to assign map task to the node
where the data already resides
– locality optimization

© Isara Anantavrasilp 32

Distributed and Combining Tasks

• A job is split into tasks and tasks are distributed to map
nodes
– Tasks are processed in parallel

• When map tasks are done, the results will be sent to
reducer(s)
– There can be more than one reducers
– Could also be zero reducer if the tasks are simple and can

be done as map tasks

• If there are more than one reducers, the map tasks
must partition the outputs
– Partition (divide) the outputs into different keys
– Send different keys to different reducers

© Isara Anantavrasilp 33

