
Big Data Analytics

Isara Anantavrasilp

Lecture 7: MapReduce Job

1© Isara Anantavrasilp

Examine Word Count Code
import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

…

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
…

}

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {

…

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

…

}

}

© Isara Anantavrasilp 2

Structure of WordCount

• Hadoop job consists of Mapper and Reducer (also
Combiner, but we will talk about that later)

• When we initiate a Hadoop job, we have to specify
what are mapper and reducer of that job
– Scheduler will run the mapper and reducer on

corresponding nodes
• In our WordCount class, we have two nested classes
– TokenizerMapper extends Mapper
– IntSumReducer extends Reducer

• There is the main method that initiate the task
– Aka the Driver

© Isara Anantavrasilp 3

main Function (Driver)
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}

© Isara Anantavrasilp 4

main Function (Driver)
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}

© Isara Anantavrasilp 5

Job name

Classes of output
Key-Value

Specify the JAR
corresponding
to the job

Input and output pathsJob submission

main Function

• Main method specifies job attributes
– Mapper, Reducer and Combiner (optional)
– Input and output classes
– Input and output locations (in this case, passed

from the program arguments)

• It also submits the job to the framework
– waitForCompletion

© Isara Anantavrasilp 6

Tokenizer Mapper

© Isara Anantavrasilp 7

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}

Mapper Class
• Mapper class is a generic type with four parameters

– Input key
– Input value
– Output key
– Output value

• A given input pair may map to zero or many output pairs.

public class
Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT> extends
Object

• Inside Mapper class, there is also a method map to execute
map task

© Isara Anantavrasilp 9

Mapper Class

• In WordCount, we define the mapper as

public class TokenCounterMapper
extends Mapper<Object, Text, Text,

IntWritable>

• This means the class TokenCounterMapper is a
subclass of Mapper

• It takes Object as key, the value of the key is text,
and the output key will be Text and the value is
Integer object IntWritable

• Map processes the input line-by-line
© Isara Anantavrasilp 10

Tokenizer Mapper

© Isara Anantavrasilp 11

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}

Output value (1)

Output key

Define output key

Input data (in our case, entire text)

Write one line of output
to output buffer

Key = word
Value = one

Combiner
• Sometimes the map results are large.
• The map results could be combined before sending to

the reducer
– The combination can be done locally
– It is optimization process, so it is not required
– Hadoop does not guarantee if it will ever be executed

• Combiner has no interface. It must have the same
interface as the reducer

• In our case, the combination is the same function as
reduction

job.setCombinerClass(IntSumReducer.class);

© Isara Anantavrasilp 12

Integer Sum Reducer
public static class IntSumReducer extends Reducer

<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {
sum += val.get();

}

result.set(sum);
context.write(key, result);

}
}

© Isara Anantavrasilp 14

Reducer Class
• Reducer class is a generic type with four parameters

– Input key
– Input value
– Output key
– Output value

• Input to the reducer is a key and a corresponding list of values
• A given input pair may map to zero or many output pairs.

public class
Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
extends Object

• Inside Reducer class, there is also a method reduce to execute
reduce task

© Isara Anantavrasilp 15

Reducer Class

• In WordCount, we define the reducer as

public static class IntSumReducer
extends Reducer
<Text,IntWritable,Text,IntWritable>

• This means the class IntSumReducer is a
subclass of Reducer

• It takes Text as key, the value of the key is
Integer, and the output key will be Text and the
value is Integer object IntWritable

© Isara Anantavrasilp 16

Exercise

• Edit the mapper to count lines, instead of
words

• Edit the mapper to count number of all words
(not each word)

• Edit the mapper to count both lines and words

© Isara Anantavrasilp 17

Word Count of Shakespeare

© Isara Anantavrasilp 18

Homework

• Clean the word count results
– Currently, the results of word count are very redundant

because the words may contain special characters. (e.g.,
“Caesars., Caesars’, “Caesars,”)

– Clean those special characters

• Handle the upper/lower cases
– Some words might be upper and lower cases or both
– Count the words while ignoring the cases

• Average words per line

© Isara Anantavrasilp 19

