
Big Data Analytics

Isara Anantavrasilp

Lecture 8: HDFS Storage

1© Isara Anantavrasilp

HDFS Server Processes

• HDFS is implemented with two main server
processes:
– NameNode: A server process that holds all metadata

of HDFS filesystem
– DataNodes: Processes that manages the actual data

blocks, distributed on many servers.
• They are configured in a master-slave setup
• All files in HDFS are split into several DataNodes.
• The NameNode tracks how to reconstruct the

blocks into files.

© Isara Anantavrasilp 2

Filesystem Information Files

• The information of how to reconstruct each file in
the filesystem from blocks is stored in one file:
fsimage
– Without it, HDFS is useless
– The file is stored in NameNode

• When the files within HDFS are changed,
NameNode does not update fsimage
immediately

• The changes are kept in another file: edits
• edits tracks all changes of HDFS since last
fsimage save

© Isara Anantavrasilp 3

NameNode Startup

• NameNode reads and stores fsimage in it’s
memory when it is started

• Next it reads the edits file
• Then, it applies all changes stored in edits

file onto fsimage
• Finally, it is ready to receives new client’s

commands
• This is why NameNode requires particularly

large memory

© Isara Anantavrasilp 4

DataNode Startup

• When the DataNode is started, it catalogs the blocks
that it holds
– The blocks are stored as normal files on the node

• Then, the DataNode performs consistency checking on
the blocks

• The DataNode sends the list of blocks to the
NameNode
– This is how NameNode learns which DataNodes hold

which blocks
• DataNode is now registered with NameNode
• DataNode will keep sending heartbeats to NameNode

© Isara Anantavrasilp 5

Secondary NameNode

• To speed up NameNode startup process, Hadoop
also implements Secondary NameNode

• It is responsible for periodically reading the latest
version of the fsimage and edits file and
creating a new up-to-date fsimage with the
outstanding edits applied.

• Essentially, it keeps updating a copy of fsimage
in background while the actual fsimage is still
unchanged

© Isara Anantavrasilp 6

What If NameNode Fail?

• NameNode and Secondary NameNode are
introduced in Hadoop 1

• This scheme leads to one large flaw:
NameNode is the single point of failure

• You might have several copies of blocks, but if
the fsimage is corrupted, the entire HDFS
will not be usable anymore

• In Hadoop 1, fsimage has to be backed-up
separatedly

© Isara Anantavrasilp 7

Backup NameNode

• In Hadoop 2, Backup NameNode is introduced
• Backup NameNode keeps a local up-to-date

copy of the filesystem metadata
• If original NameNode is down, the admin can

switch to Backup NameNode manually
• Such manual process might still take too much

time and effort

© Isara Anantavrasilp 8

NameNode HA

• In current production clusters, NameNode High
Availability (NameNode HA) is normally used

• It is also introduced in Hadoop 2
• In HA setting, two NameNodes are running

simultaneously
– One is master, one is backup
– Both have up-to-date info of the filesystem
– If the master is down, the backup can takeover

immediately

© Isara Anantavrasilp 9

Failover Process
• Switching NameNode from original to the back-up one

is not trivial process
– Aka, failover: To switch to backup one when the original

one fails
• We have to make sure that
– The two NameNodes have consistent information
– The clients connects only to only one node at a time (and

should be the new one)
• If two NameNodes are accessed at the same time, they

could be out-of-sync
• Apache ZooKeeper service is often used to enable

automatic NameNode failover

© Isara Anantavrasilp 10

HDFS Snapshots

• Although HDFS provides redundancy, but that
does not mean your data will be safe
– You need to keep backups

• HDFS provides a mechanism to do so: Snapshots
• Snapshots keeps a copy the metadata of the

filesystem at a given point in time
– Stored snapshots can be viewed in the future
– Blocks associated to the snapshots will be kept, but

cannot be accessed

© Isara Anantavrasilp 11

HDFS Snapshots (2)

• Snapshot example: Consider two files
/Text/Shakespeare.txt (3 blocks)
/Text/Big.txt (10 blocks)

• Total size 13 blocks
• If you take a snapshot of the directory /Text

and you erase Big.txt
– You will see only Shakespeare.txt with 3 blocks

on HDFS
– Behind the scene, the filesystem still keeps entire 13

blocks
– The hidden blocks will be released only when the

snapshot file is deleted

© Isara Anantavrasilp 12

Allowing Snapshots

• You can create snapshots for every directory in
the filesystem, or only specific directories

• Before, creating snapshots, we have to set the
path to be snapshottable first:

sudo -u hdfs hdfs dfsadmin
-allowSnapshot /user/cloudera/Text

• The command specifies that the directory
/user/cloudera/Text is allowed to take
snapshots

© Isara Anantavrasilp 13

Allowing Snapshots (2)

• Setting snapshots directories require root
privilege
– This is why you need sudo

• The root username of HDFS is hdfs
Thus, you have to sudo as hdfs
sudo -u hdfs

• If the command is correct, you should see :
Allowing snapshot on Text succeeded

• Note that snapshots are not yet created!

© Isara Anantavrasilp 14

Creating Snapshots

• Creating a snapshot:
sudo -u hdfs hdfs dfs -createSnapshot
/user/cloudera/Text snapshot1

Created snapshot /user/cloudera/Text
/.snapshot/snapshot1

• Snapshot files are stored in ../.snapshot/
under the snapshotted directory

© Isara Anantavrasilp 15

Listing Files in Snapshots

• You can list the files in snapshots
sudo -u hdfs hdfs dfs -ls
/user/cloudera/Text/.snapshot/snapsh
ot1

• Result
Found 4 items
-rw-r--r-- 1 cloudera cloudera
6488666 2018-10-16 15:10 /user/cloudera/
Text /.snapshot/snapshot1/big.txt
...

© Isara Anantavrasilp 16

Let’s try to delete a file

• Deleting with
hadoop fs -rm Text/hello2.txt

• Now, try to list the files

• Examine the snapshots
sudo -u hdfs hdfs dfs -ls
/user/cloudera/Text/.snapshot/sna
pshot1

• Note that the file is still there

© Isara Anantavrasilp 17

Let’s view the file

• We can view a text file with cat command
hadoop fs -cat Text/hello2.txt
cat: `WordCount/hello2.txt': No such
file or directory

• The file is not in the HDFS anymore

• But it is still in the snapshot, so we can do:
hadoop fs -cat
Text/.snapshot/snapshot1/hello2.txt

© Isara Anantavrasilp 18

Erasing Snapshots

• Snapshots practically copies your files for you
– Can be read or copied anytime
– Each directory can hold 65,535 snapshots

• Thus, we will have to erase them to free up
some space
sudo -u hdfs hdfs dfs -
deleteSnapshot /user/cloudera/Text
snapshot1

© Isara Anantavrasilp 19

Data Serialization

• Serialization: Conversion of object into stream
of bytes such that the objects can be stored or
streamed through a communication link.

• Deserialization: Conversion of byte streams
back to object

• Since HDFS is distributed filesystem, Hadoop
has special mechanisms to serialize and
deserialize data across the network

© Isara Anantavrasilp 20

Writable Interface

• Main package that handles serialization in
Hadoop is org.apache.hadoop.io

• It contains Writable interface to handle
serialization of different kinds of objects
public interface Writable {

void write(DataOutput out)
throws IOException ;

void readFields(DataInput in)
throws IOException ;

}

© Isara Anantavrasilp 21

Basic Writable Classes

• Hadoop provides some wrappers classes in
org.apache.hadoop.io
– BooleanWritable
– ByteWritable
– DoubleWritable
– FloatWritable
– IntWritable
– LongWritable
– Text: For serializing java.lang.String

© Isara Anantavrasilp 22

Further Writable Classes

• Collection-based wrapper classes also
available
– ArrayWritable
– TwoDArrayWritable

• Variable-length types
– VIntWritable: Variable-length integer
– VLongWritable: Variable-length long

© Isara Anantavrasilp 23

