Big Data Analytics

Isara Anantavrasilp

Lecture 8: HDFS Storage

© lsara Anantavrasilp



HDFS Server Processes

 HDFS is implemented with two main server
processes:

o« T

: A server process that holds all metadata
of HDFS filesystem

: Processes that manages the actual data
blocks, distributed on many servers.

ney are configured in a master-slave setup

* All files in HDFS are split into several DataNodes.

o« T
b

ne NameNode tracks how to reconstruct the
ocks into files.




Filesystem Information Files

The information of how to reconstruct each file in
the filesystem from blocks is stored in one file:

— Without it, HDFS is useless
— The file is stored in NameNode

When the files within HDFS are changed,
NameNode does not update fsimage
immediately

The changes are kept in another file:

edits tracks all changes of HDFS since last
fsimage Save



NameNode Startup

NameNode reads and stores fsimage init’s
memory when it is started

Next it reads the edits file

Then, it applies all changes stored in edits
file onto fsimage

Finally, it is ready to receives new client’s
commands

This is why NameNode requires particularly
large memory



DataNode Startup

When the DataNode is started, it catalogs the blocks
that it holds

— The blocks are stored as normal files on the node

Then, the DataNode performs consistency checking on
the blocks

The DataNode sends the list of blocks to the
NameNode

— This is how NameNode learns which DataNodes hold
which blocks

DataNode is now registered with NameNode
DataNode will keep sending heartbeats to NameNode



Secondary NameNode

* To speed up NameNode startup process, Hadoop
also implements Secondary NameNode

* |tisresponsible for periodically reading the latest
version of the £ simage and edits file and
creating a new up-to-date fsimage with the
outstanding edits applied.

* Essentially, it keeps updating a copy of £simage
in background while the actual £simage is still
unchanged



What If NameNode Fail?

NameNode and Secondary NameNode are
introduced in Hadoop 1

This scheme leads to one large flaw:
NameNode is the single point of failure

You might have several copies of blocks, but if
the fsimage is corrupted, the entire HDFS

will not be usable anymore

In Hadoop 1, £simage has to be backed-up
separatedly



Backup NameNode

In Hadoop 2, Backup NameNode is introduced

Backup NameNode keeps a local up-to-date
copy of the filesystem metadata

If original NameNode is down, the admin can
switch to Backup NameNode manually

Such manual process might still take too much
time and effort



NameNode HA

* |n current production clusters, NameNode High
Availability (NameNode HA) is normally used

* |tis alsointroduced in Hadoop 2

* |In HA setting, two NameNodes are running
simultaneously
— One is master, one is backup
— Both have up-to-date info of the filesystem

— |f the master is down, the backup can takeover
immediately



Failover Process

e Switching NameNode from original to the back-up one
is not trivial process
— Aka, failover: To switch to backup one when the original
one fails
* We have to make sure that
— The two NameNodes have consistent information
— The clients connects only to only one node at a time (and
should be the new one)
* |f two NameNodes are accessed at the same time, they

could be out-of-sync
* Apache ZooKeeper service is often used to enable
automatic NameNode failover



HDFS Snapshots

* Although HDFS provides redundancy, but that
does not mean your data will be safe

— You need to keep backups
 HDFS provides a mechanism to do so: Snapshots
* Snapshots keeps a copy the metadata of the
filesystem at a given point in time

— Stored snapshots can be viewed in the future

— Blocks associated to the snapshots will be kept, but
cannot be accessed



HDFS Snapshots (2)

* Snapshot example: Consider two files
/Text/Shakespeare.txt (3 blocks)
/Text/Big.txt (10 blocks)

* Total size 13 blocks
* |If you take a snapshot of the directory /Text

and you erase Big.txt

— You will see only Shakespeare.txt with 3 blocks
on HDFES

— Behind the scene, the filesystem still keeps entire 13
blocks

— The hidden blocks will be released only when the
snapshot file is deleted



Allowing Snapshots

* You can create snapshots for every directory in
the filesystem, or only specific directories

* Before, creating snapshots, we have to set the
path to be snapshottable first:

sudo —-u hdfs hdfs dfsadmin
-allowSnapshot /user/cloudera/Text

* The command specifies that the directory

/user/cloudera/Text is allowed to take
snapshots



Allowing Snapshots (2)

Setting snapshots directories require root
privilege
— This is why you need sudo

The root username of HDFS is hdfs
Thus, you have to sudo as hdfs

sudo —-u hdfs

If the command is correct, you should see :
Allowing snapshot on Text succeeded

Note that snapshots are not yet created!



Creating Snapshots

* Creating a snapshot:
sudo —-u hdfs hdfs dfs -createSnapshot
/user/cloudera/Text snapshotl

Created snapshot /user/cloudera/Text
/ .snapshot/snapshotl

* Snapshot files are stored in ../ .snapshot/
under the snapshotted directory

© lsara Anantavrasilp 15



Listing Files in Snapshots

* You can list the files in snapshots
sudo —-u hdfs hdfs dfs -1s

/user/cloudera/Text/.snapshot/snapsh
otl

e Result
Found 4 1tems
- Irw-r—--r—- 1 cloudera cloudera
6488666 2018-10-16 15:10 /user/cloudera/
Text /.snapshot/snapshotl/big.txt



Let’s try to delete a file

Deleting with
hadoop fs -rm Text/hello2.txt

Now, try to list the files

Examine the snapshots
sudo -u hdfs hdfs dfs -1s

/user/cloudera/Text/.snapshot/sna
pshotl

Note that the file is still there



Let’s view the file

 We can view a text file with cat command
hadoop fs -cat Text/hello2.txt
cat: "WordCount/hello2.txt': No such
file or directory

* The file is not in the HDFS anymore

* Butitis still in the snapshot, so we can do:
hadoop fs -—-cat

Text/.snapshot/snapshotl/hello2.txt



Erasing Snapshots

* Snapshots practically copies your files for you
— Can be read or copied anytime

— Each directory can hold 65,535 snapshots

* Thus, we will have to erase them to free up
some space
sudo —-u hdfs hdfs dfs -

deleteSnapshot /user/cloudera/Text
snapshotl



Data Serialization

* Serialization: Conversion of object into stream
of bytes such that the objects can be stored or
streamed through a communication link.

* Deserialization: Conversion of byte streams
back to object

* Since HDFS is distributed filesystem, Hadoop
has special mechanisms to serialize and
deserialize data across the network

© lsara Anantavrasilp 20



Writable Interface

* Main package that handles serialization in
Hadoop is org.apache.hadoop.io

e |t contains Writable interface to handle

serialization of different kinds of objects
public interface Writable {
vold write (DataOutput out)
throws IOException ;
volid readFields (DatalInput 1in)
throws IOException ;



Basic Writable Classes

 Hadoop provides some wrappers classes in
org.apache.hadoop.10

—BooleanWritable
— ByteWritable

— DoubleWritable
— FloatWritable

— IntWritable

— LongWritable

— Text: For serializing java.lang.String



Further Writable Classes

* Collection-based wrapper classes also
available

— ArrayWritable
— TwoDArrayWritable

* Variable-length types
—VIntWritable: Variable-length integer
— VLongWritable: Variable-length long



