Computer Networks and Communication

Lecture 8

Network Layer

Network Layer

- Task: Move packets from a sending host to a receiving host
- Getting to the destination may involve many hops at intermediate routers
- The network layer must determine the network wide end-to-end path to send packets from sender to receiver
 - This process is called routing
 - Algorithms to determine the paths of packets are called routing algorithms

Internet Network-Layer Components

- The Internet's network layer consists of three components
 - IP Protocol: Responsible for host addressing and datagram format and forwarding
 - Routing Protocols: Determines the path a datagram follows from source to destination
 - Example: RIP, OSPF, BGP
 - ICMP Protocol: Error reporting and provides certain network-layer information

Internet Protocol

- The Internet is a network of networks
- Different subnetworks or Autonomous
 Systems (ASes) in the Internet might be implemented on different sets of hardware, software and protocols
- **Problem**: How can two nodes in different ASes communicate with each other?
 - IP is designed to solve this very problem

Internet Protocol (2)

- Main protocol of the Internet
- Defined in RFC 791
- We are moving from IPv4 to IPv6
- IP features
 - Best-effort service to transport datagrams from sources to destinations
 - The datagram transportation works within the same network and across networks
 - Host addressing conventions

IPv4 Protocol Header

← 16 bit →				16 bit ────>
Version	Header Iength	Type of Service	Total datagram length (bytes)	
16-bit Identifier			Flags	13-bit Fragmentation Offset
Time-to-Live		Upper-layer Protocol	Header Checksum	
Source IP Address (32 bit)				
Destination IP Address (32 bit)				
Options (if any)				
Payload (variable length)				

IP Fragmentation

- Network layer has to communicate with the link layer which controls the physical medium
 - Maximum size of a packet (or frame) in link layer is specified as Maximum Transfer Unit (MTU)
 - Different link types => Different MTU
- Problem: You have datagrams with the same size, how can you be sure that they will fit in different frames of different link types with different MTU?

IP Fragmentation (2)

- Solution: You divide each datagram smaller datagrams such that the divided datagrams fit the link-layer frames. This process is called "fragmentation"
- Fragmentation
 - Large datagram is divided into several datagram
 - A sub-datagram is called a fragment
 - Fragments are resembled back into original datagram at the final destination
 - A number of IP header fields are used for the fragmentation

IP Fragmentation (3)

IP Fragmentation (4)

IP Fragmentation Example

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = 1480/8

One large datagram becomes several smaller datagrams

flag=0 indicates the last packet

Network Interface

- A network interface is a component which a network device used to connect to a network
 - WiFi
 - Ethernet
 - Bluetooth
- Of course, a device can have more than one interface of different or the same type
- Each router has at least two

IP Address and Network Interface

- IP requires that each interface in a network must have a unique IP address
- This means, a router have multiple addresses associated to different interfaces

IP Address

- An IPv4 address is a 32 binary number
 11000001 00100000 11011000 00001001
- Can refer up to $2^{32} = ^4$ billion addresses
- An IP address is usually written using dotteddecimal notation
 - Each byte (8 bit) of the address is written in decimal form
 - Separated by a period (dot)

193.32.216.9

IP Address (2)

IP Subnet

- A subnet is a sub-division of an IP network
 - All hosts in the same subnet share the same X digits of IP addresses
 - For example first 24 bits of the following addresses are the same

```
223.1.1.1, 223.1.1.2, 223.1.1.3
```

We can refer to this subnet as

223.1.1.0

CIDR

- Typical address assignment strategy is called Classless Inter-Domain Routing (CIDR)
- It divides an address into two parts
 - Network number: The first X bits
 - Host number: The rest
 - An IP address can be written as

where 24 denotes that the first 24 bits is the network-number portion

A subnet, in turn, is denoted by

CIDR (2)

Example:

223.1.1.0/24

11011111 00000001 00000001 00000000

network number (subnet) part — host part →

Micro exercise:

200.23.16.0/23

11001000 00010111 00010000 00000000

network number (subnet) part host part

IP Subnet (2)

IP Subnet (3)

Classful Network (Obsolete)

- It is an addressing strategy used in 1980s before CIDR was introduced
- IP Addresses are divided into 5 classes, A E
- Each class has different (and fixed) size of network number portion and host number portion
- It is obsolete: It does not scale to the size of the Internet

Classful Network (2)

Class A: For networks which have up to 16 million hosts (0.0.0.0 – 127.255.255.255) 0 1 8 16 24 31 Network ID Host ID **Class B**: For networks which have up to 65,536 hosts (128.0.0.0 – 191.255.255.255) Network ID Host ID **Class C**: For networks which have up to 256 hosts (192.0.0.0 – 223.255.255.255) Network ID **Host ID Class D**: For multicast networks (224.0.0.0 – 239.255.255.255) Multicast Addresses **Class E**: Reserved for future uses (240.0.0.0 – 255.255.255.255) 1 1 1 Reserved for Future Uses

Netmask

- Mask or netmask is a form of denoting the separation between network and host parts in the IP address
- To specify that the network part is first 24 bit, it is written as:

11111111 11111111 11111111 00000000

Or

255.255.255.0

• If the network part is the first 18 bit, , it is written as:

11111111 11111111 11000000 00000000

Or

255.255.192.0

This notation is valid only in IPv4, but not IPv6

Private Addresses

- Problem: If all hosts in the Internet have IP addresses, some might use the same addresses as our private machines
 - Example: www.google.com IP is 74.125.135.104
 If an host in my subnet also has the address 74.125.135.104, how could my router know which host I want to connect to?
- Solution: Specific address spaces that are assigned only to private addresses or "private Internets"

Private Addresses (2)

- IANA has reserved the following ranges for private Internets:
 - 10.0.0.0 10.255.255.25510/8 prefix or 24-bit block
 - 172.16.0.0 172.31.255.255
 172.16/12 prefix or 20-bit block
 - 192.168.0.0 192.168.255.255
 192.168/16 prefix or 16-bit block
- The address ranges are different in sizes.
- Their uses can be chosen based on the size of the networks or enterprises.
- This is the reason why your routers usually begin with 192.168.1 or 192.168.0

Network Address Translation (NAT)

- What we learned: Each host has to have an IP address
- Problems:
 - Does your ISP has to assign IP to each of your network devices (e.g. Desktop, MacBook, and BB)?
 - Is there enough IP addresses for every device on earth?
- Solution: Network Address Translation (NAT)
 - A mapping between IP addresses and ports across two interfaces of a router

Network Address Translation (2)

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Network Address Translation (3)

1: host 10.0.0.1 2: NAT router NAT translation table changes datagram sends datagram to WAN side addr LAN side addr srcIP from 128.119.40.186, 80 138.76.29.7,5001 10.0.0.1,3345 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table S: 10.0.0.1, 3345 D: 128.119.40.186, 80 10.0.0.1 10.0.0.4 S: 138.76.29.7, 5001 D: 128.119.40.186, 80 10.0.0.2 S: 128.119.40.186, 80 138.76.29.7 D: 10.0.0.1, 3345 S: 128.119.40.186, 80 D: 138.76.29.7, 5001 10.0.0.3 4: NAT router 3: Reply arrives changes datagram dstIP: 138.76.29.7, 5001 dstIP from 138.76.29.7, 5001

to 10.0.0.1, 3345

Problems with NAT

- A host behind NAT can establish connection to any outside host
- But it cannot act as a server waiting for any connection
 - Because the outside client would not know which WAN-side port to connect to
 - If it wants to connect to specific port, the outside client cannot know if the server is waiting inside the NAT

Connection Reversal

- NAT Problem can be circumvented using connection reversal technique
- Connection reversal works as follows:
 - A wants to connect to B and B is behind NAT
 - A is **not** behind NAT
 - B has to connect to intermediate server, C, first
 - Then, A connects to C, asking C to ask B to connect back to A
- However, if A is also behind NAT, we would end up with the same problem
 - Solution: Relaying technique (Homework)
 - Solution: UPnP (Homework)

DHCP

- Dynamic Host Configuration Protocol (DHCP)
- Automatically configures the hosts which are connected to a network
- Provides network-configuration information to hosts, e.g.
 - IP address
 - DNS server address
 - Subnet mask
 - Router address
- DHCP is a client-server protocol
 - The hosts who wants to connect to a network must send DHCP configuration request to a DHCP server

DHCP Configuration Process

- A host (client) who wants to connect to a network finds a DHCP server
 - Sending DHCP discover message to the broadcast address
 (255.255.255) using UDP at port 67
 - Using broadcast address, all hosts in the network receive the message
- DHCP server(s) in the network responses to the message by sending DHCP offer message back to the broadcast address, now to port 68.
 (Why broadcast address?)
 - The offer message contains the network configuration information
- DHCP client sends **DHCP request message** to the responded servers confirming the configuration info
- DHCP server sends DHCP ACK message confirming the request

03/10/2012 © Isara Anantavrasilp 32

IPv6

- Upcoming version of IP protocol
- Motivation
 - IPv4 addresses are running out
 - IPv4 address space: 2³² = ~4 billion addresses
 - IPv6 address space: 2¹²⁸ =3.4 x 10³⁸ (6 x 10²³ addresses per m² of Earth surface)
 - Improve packet routing speed and efficiency
 - The header has only 8 instead of 13 fields
 - The header has fixed length (40 bytes)
 - · Eliminate the option field
 - Introduce Flow Label and Traffic Class fields to accommodate Quality-of-Service (QoS)
 - No fragmentation. No checksum

IPv6 Protocol Header

