Big Data Analytics

Isara Anantavrasilp

Lecture 9-10: MapReduce Continued

© lsara Anantavrasilp



WordCount Revisited

* |n the previous version of WordCount, we use
main function as the driver

public static void main(String[] args)
throws Exception { .. }

e Drawbacks:

— You have to recompile the code, rebuild the JAR
file if you want to reconfigure your task

— Example: Number of reducers, required libraries



Tool and ToolRunner

* ToolRunner is a utility class that runs classes
which implements Tool

— Our new WordCount will implement Tool too

public class WordCount extends Configured
implements Tool ({

* ToolRunner delegates to GenericOptionParser
— Parses command line arguments (options)
— Sets parsed arguments on Configuration object



Revamped WordCount

Configured is an implementation class of
~~ theinterface Configurable

public class WordCount extends Configured implements Tool

{

public static class TokenCounterMapper
extends Mapper<Object, Text, Text, IntWritable>{
}

public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

public int run(String[] args) throws Exception {

}

public static void main(String[] args) throws Exception ({
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit (exitCode) ;

© lsara Anantavrasilp 4



WordCount run()

public int run(String[] args) throws Exception {
Configuration conf = getConf () ;

args = new GenericOptionsParser (conf, args).getRemainingArgs();
Job job = Job.getInstance (conf);

job.setJarByClass (WordCountConf.class) ;

job.setMapperClass (TokenizerMapper.class);

job.setReducerClass (IntSumReducer.class) ;

job.setOutputKeyClass (Text.class) ;

job.setOutputValueClass (IntWritable.class)

FileInputFormat.addInputPath (job, new Path(args[0]));
FileOutputFormat.setOutputPath (job, new Path(args[l])):

return (job.waitForCompletion(true) 2 0 : 1);

© lsara Anantavrasilp



n-Gram

* n-Gram is a contiguous sequence of n items
from a given sample of text or speech

— Elements that always come together
— This could be syllables, letters, words, etc.

e 2-gram or bigram is a pair of items that always
come together

— Example: to + be, t+o,

e Let’simplement a bigram analysis



Bigram Mapper

public static class BiGramMapper
extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map (Object key, Text value, Context context)
throws IOException, InterruptedException {

String[] words = wvalue.toString () .split ("™ ");

Split string with space
Text bigram = new Text ();
String prev = null;

Create a pair of words:

for (String s : words) { .
/ previous + current

if (prev !'= null) {
bigram.set (prev + "\t+\t" + s);
context.write (bigram, one);

) —— Add that to the context

prev = s;

© lsara Anantavrasilp



We also use Hadoop library

* |f you take a look at the driver, you will notice
that we changed the reducer

job.setReducerClass (IntSumReducer.class);

* |tis provided by Hadoop and is imported here:
import
org.apache.hadoop.mapreduce.lib.reduce.
IntSumReducer;

* |t uses the same logic as our reducer



To run the Bigram code

e Compile:
hadoop com.sun.tools.javac.Mailn
BiGramCount. java

e Make Jar file:

jar cf bigram.jar BiGramCount*.class

* Run the program (We also set reduce task to 1):
hadoop jar bigram.jar BiGramCount -D
mapred.reduce.tasks=1[1nput] [output]



Bigram Analysis

e Let’s have a look at the Bigram output
cat part-r-00000

 We can also sort and filter (all in one line):
cat part-r-00000 | sort -t$'"\t' -k4
-nr | head -n 20



Exercise (5 points)

e Sort the result of WordCount

* BiGram suffers from the same “dirty”
characters as WordCount (commas, full stops,
etc.) as well as tabs and spaces.

Clean BiGram result.



Finding Top 10 Words

e We could use Unix tool to sort and filter word
count results, but it will not scale

e Let’s use MapReduce instead

* Download and run TopTenWords.java using
WordCount result as input

hadoop jar toptenwords.jar
TopTenWords out/part-r-00000 out-
topten



TreeMap

 TopTenWords utilizes Java TreeMap

— Efficient means to store key-value pairs in sorted
order

— Guaranteed to sort in ascending order
— Use method put (key, value) to add element to tree
* Key is always sorted



TopTenWords - Mapper

 Map function adds words to the tree map
— If tree is larger than 10, remove the lowest one

 Then in cleanup method, it values to context
— The results of the map are written at the end of the all
loops, not during the loops
— cleanup is called once after all key/value pairs have been
presented to the map method
 The output key is NullwWwritable which writes null
value (zero-length serialization)

— NullWritable can be used in both key or value if you do not
need to write anything (empty value or any value)



TopTenWords - Mapper

public void map (Object key, Text wvalue, Context context)
throws IOException, InterruptedException ({
// (word, count) tuple
String[] words = value.toString() .split ("\t") ;
if (words.length < 2) {
return; Use count as key

topN.put (Integer.parselnt (words[1l]), new Text (value));

if (topN.size() > 10) { ///

topN.remove (topN.firstKey()) ; Use (word, count) as value

}

protected void cleanup (Context context) throws IOException,
InterruptedException {
for (Text t : topN.values()) {
context.write (NullWritable.get (), t):
} -

} Key could be anything

© lsara Anantavrasilp 17



TopTenWords - Reducer

* Reducer employs the same concept as mapper
* |t takes the top ten list from all mappers and filter out only the highest 10
* Note that it takes Nullwritable as input (and output)

public void reduce (NullWritable key, Iterable<Text> values,
Context context) throws IOException, InterruptedException {
for (Text value : values) {
) .split ("\t") ;
topN.put (Integer.parselnt (words[1l]), new Text (value));
if (topN.size() > 10) {
topN.remove (topN.firstKey());

String[] words = value.toString(

for (Text word : topN.descendingMap () .values()) {
context.write (NullWritable.get (), word);



Multi-Step Processes

Previously, we have only one mapper

Sometimes, we need several mappers to work
together e.g. pre-processing data, trimming text

or set text cases

class allows several mappers to
work as a pipeline

We can specify which mappers to be used and
they will be executed one after one

Output of the first mapper, will be the input of
the second mapper



ChainMapper

 Mappers are added to the configured job using the
following method:

ChainMapper .addMapper (

JobConf job,

Class<? extends Mapper<Kl,Vl,K2,V2>> class,
Class<? extends Kl1> 1nputKeyClass,

Class<? extends V1> inputValueClass,
Class<? extends KZ2> outputKeyClass,

Class<? extends V2> outputValueClass,
JobConf mapperCont)

© lsara Anantavrasilp 20



addMapper Arguments

job: JobConf to add the Mapper class

class: Mapper class to add

inputKeyClass: mapper input key class
inputValueClass: mapper input value class
outputKeyClass: mapper output key class
outputValueClass: mapper output value class

mapperConf: a JobConf with the configuration
for the Mapper class

Input and output classes must match those in
classes declaration



Adding Mapper in the Driver

public int run(String[] args) throws Exception {

Configuration lowerCaseMapperConf= new Configuration(false);
ChainMapper.addMapper (]ob, IntWritable is not needed.

LowerCaseMapper.class, This could be just NullWritable
Object.class, Text Ss,

IntWritable.cldss, Text.class,
loweCaseMapperCont) ;

Configuration tokenizerConf= new Configuration (false);
ChainMapper .addMapper (job,
TokenilzerMapper.class,

IntWritable.class, Text.class,
Text.class, IntWritable.class,

tokenizerConftf) ;

© lsara Anantavrasilp 22



Mapper Declarations

* Inputs and outputs of all mappers must be corresponding
to each other in both class declarations and in the
configuration

public static class LowerCaseMapper
extends Mapper <Object, Text,
IntWritable, Text>

public static class TokenilzerMapper
extends Mapper <IntWritable, Text,
Text, IntWritable>

© lsara Anantavrasilp 23



LowerCaseMapper

* Let us define a simple pre-processing mapper

e LowerCaseMapper uses String’s
toLowerCase () method to change all input text to
lower case

public static class LowerCaseMapper
extends Mapper<Object, Text, IntWritable, Text> {

private Text lowercased = new Text();

public void map (Object key, Text wvalue, Context context)
throws IOException, InterruptedException {

lowercased.set (value.toString () .toLowerCase()) ;
context.write (new IntWritable(l), lowercased):;



Configuration Steps

We have to modify Tokenizer in WordCount

Add the mappers into the chain

— Make sure that the types of all mappers in the
chain are corresponding to each other

The rest is the same
The source code is in Moodle



Exercise (5 points)

* Clean text files
— Change text to lower case

— Add another mapper to trim words and remove

on» )

special characters (e.g. “”, :, ;, ...

* Count Top-10 using TreeMap
 Work with group of 1-2 people



