Computer Networks and Communication

Lecture 9

Network Layer II:

Routing Algorithms

Packet Routing and Forwarding

- A router forwards a packet through a link based on its forwarding table
- The forwarding table is created by a routing algorithm

Graph Abstraction of a Topology

Graph: G = (N, E)

 $N = \text{set of routers} = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Cost of a Path

- c(x,x') = cost of link (x,x')
 e.g., c(w,z) = 5
- Cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Cost of a Path (2)

- What could be used as the cost of a path?
 - That is what could be used as the function c(x,x')?
 - Distance
 - Bandwidth
 - Average traffic
 - Number of hops
- Should the cost from x to x' and x' to x be equal?
 - That is, should c(x,x') = c(x',x)?
 - In which case would $c(x,x') \neq c(x',x)$?
- If all links have the same cost, the least-cost path is also the shortest path

Routing Algorithm

- Routing algorithm is a piece of software that find the least-cost path from one network node to another
- They can be divided into two categories
 - Global information
 - All routers have complete network structure (topology)
 - Link state algorithms
 - Decentralized information
 - Each router has knowledge of adjacent routers only
 - Distance vector algorithms

A Link-State Routing Algorithm

Dijkstra's algorithm

- Compute the least-cost path from a node x to x'
- Topology and link costs are known to all nodes
 - Such information is shared using link-state broadcast
 - All nodes have the same information
- Computes least-cost paths from one node (the source) to all other nodes
- Introduced by Dutch mathematician Edsger
 Dijkstra in 1959

Dijkstra's Algorithm

- Initially, assign a distance value (cost) to every node
 - Cost of initial node = 1
 - Cost of other nodes = infinity
- Mark all nodes unvisited. Mark initial node as current
- For current node, consider all unvisited neighbors and calculate their tentative distance
- If all neighbors of the current node is considered, mark it as visited
- Move current node to the unvisited node with the lowest distance
- If all nodes have been visited, the algorithm terminates.

Dijkstra's Algorithm in Action

Find a shortest path from A to D

Dijkstra's Algorithm in Action (2)

Note that G's cost is updated

Dijkstra's Algorithm in Action (3)

Shortest / least-cost path: ABEFHD

10/10/2012 © Isara Anantavrasilp 11

A Distance Vector Algorithm

- Bellman-Ford algorithm
- Each router maintains a table (i.e. a vector) giving the least-cost path to all other nodes
- The cost of a path is thought to be the distance between two nodes
- Originally used in ARPANET
- Now, it is being obsolete

Bellman-Ford Algorithm

- Each router maintains a routing table that contains
 - Preferred outgoing link to each destination in the subnet
 - The cost to that destination
- Each router is presumed to know the cost to all its neighbors
- The cost from a node x to a node x' can be determined by repeatedly asking for the cost from each neighbor in the path from x to x'

Bellman-Ford Algorithm (2)

Determining the cost from u to z

- u knows that c(u,v) = 2 and c(u,x) = 1
- u asks v and x: What are c(v,z) and c(x,z), respectively
- If c(v,z) = 8 and c(x,z) = 3, then the costs from u to z through v and x are c(u,v)+c(v,z) = 2+8 = 10 and c(u,x)+c(x,z) = 1+3 = 4, respectively So, u determines that c(u,z) = 4
- But how do v and x determine c(v,z) and c(x,z)?
 - The same way as u did!

Bellman-Ford Algorithm in Action

10/10/2012

Updating Distance Vector

- When a node detects link cost change
 - E.g., when a link is cut or an adjacent node is down
 - Distance vector in that node is updated
 - If the vector changes, the node notifies its neighbors

Link-State VS Distance Vector

Message complexity

- <u>LS:</u> with n nodes, E links, O(nE) messages sent
- <u>DV:</u> exchange between neighbors only
 - convergence time varies

Speed of Convergence

- LS: O(n²) algorithm requires O(nE) messages
- <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

<u>LS:</u>

- node can advertise incorrectlink cost
- each node computes only itsown table

<u>DV:</u>

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate through the network

Hierarchical Routing

- Some networks (such as the Internet) are too large, so the networks are divided into smaller regions
- Routers within the same region use the same routing protocols and algorithms
- All routers in the same region have routing information (e.g., link costs) of their own region
- Each region has at least one gateway node,
 which is used to communicate with other regions

Hierarchical Routing (2)

- In computer network field, we call a region an Autonomous System (AS)
- Dividing the networks into ASes reduces the size of the routing table tremendously

Inter-Autonomous System Routing

- Suppose router in AS2 receives datagram for which destination is outside of AS2
 - Router should forward packet towards on of the gateway routers, but which one?
- AS2 has to learn which destinations are reachable through AS1 and which through AS3
- It also has to propagate this reachability info to all routers in AS2

Routing Protocols

- Interior Gateway Protocol (IGP): Routing within an AS (Intra-AS routing)
 - Routing Information Protocol (RIP)
 - Based on **Distance Vector** routing algorithm
 - Converge slowly
 - Widely used but getting obsolete
 - Open Shortest Path First (OSPF)
 - Based on Link-State and Dijsktra's algorithm
- Exterior Gateway Protocol (EGP): Routing between different ASes (Inter-AS routing)
 - Border Gateway Protocol (BGP): De facto standard in inter-AS routing

Internet Control Message Protocol

- In short: ICMP
- It is part of TCP/IP protocol suite
 - IP is responsible only for packet transfer
 - ICMP is used to send error and control messages among network devices
- ICMP for IPv6 is called ICMPv6
- Example messages
 - Destination Unreachable
 - Time Exceeded: Time-to-Live of a packet is exceeded
 - Echo Request / Reply: Request for an echo
 - Timestamp Request / Reply: Similar to echo request, but with timestamp of packet arrival time