Computer Networks and Communication

Lecture 10

Link Layer

Link Layer

- In this course, we will learn the following link layer services:
 - Error detection and correction
 - Multiple access: sharing a broadcast channel
 - Link-layer addressing
 - Flow control
 - Reliable data transfer:
 - Acknowledgement and retransmission
 - Essential to some network links (e.g. WLAN, UMTS) are prone to error
 - A number of link layer technologies and protocols

Link Layer (2)

- Nodes: Hosts and routers
- Links: Communication channels that connect adjacent nodes along communication path
 - Wired links (LANs)
 - Wireless links (WLANs)
- Frame: Layer-2 packet that encapsulates datagram
- Data-link layer is responsible for transferring frame from one node to adjacent node over a link

Link Layer: Concept

- Datagrams are transferred by different link-layer protocols over different links
- Transportation analogy: A tourist books a trip from Rayong to Venice
 - First link: A bus from Rayong to Suvarnabhumi airport
 - Second link: A plane from Suvarnabhumi to Fiumicio airport
 - Third link: A train from Fiumicio to Venice
 - Tourist = datagram
 - Travel agent = routing algorithm
- Remember: link layer concerns only transferring data within a single link

Network Adaptors Communication

- Link layer software and hardware are implemented network adaptor or network interface card (NIC)
 - Ethernet card
 - WiFi card
 - Bluetooth adaptor
- Datagram from network layer are encapsulated in a frame
 - Header is added in the front of the datagram
 - Some protocols also add a trailer at the end of the datagram

Error Detection and Correction

- Since a physical links are not perfect, the link layer has to provide error detection (and sometimes correction) mechanisms
- Error detection techniques can be categorized into three groups:
 - Parity checking
 - -Checksum
 - Cyclic Redundancy Check (CRC)

Error Detection and Correction (2)

- Generally, error detection and correction are done by:
 - Adding Error-Detection and –Correction bits (EDC) along with the original data
 - The longer EDC, the better detection and correction
 - Nevertheless, error detection is not 100% reliable

Parity Checking

- Simplest form of error detection
- Use a parity bit as EDC bit
 - Even parity scheme: total number of 1s in data and the parity bits is even
 - Odd parity scheme: total number of 1s in data and the parity bits is odd

Do you think one-bit parity scheme is safe?

One-bit even parity

2D Parity Checking

- Enhanced variation of parity checking
 - Detect and correct one-bit error at receiver side
 - Can detect (but not correct) two-bit error (Why?)
- Ability of detecting and correcting the error at the receiver side without retransmission is called Forward Error Correction (FEC)

Internet Checksum

- Detecting errors (flipped bits) in transmitted segment
- It is used at transport layer only
 - Because it is faster than CRC check
- Sender computes checksum sequence and put it in the protocol header
- Receiver computes the checksum of the received segment and verify with the checksum value in the header
- We have discussed this already few weeks ago

Cyclic Redundancy Check

- Cyclic Redundancy Check (CRC)
- Most popular error detection
 - Sometimes called CRC check
 - It is also called Polynomial code because the coded bits can be represented by polynomial function

$$G(X) = X^n + X^{n-1} + ... + X^2 + X^1 + X^0$$

– Example:

$$G(X) = X^3 + X^0 = 1001$$

CRC Computation

- The sender wants to send the data D of length d
- The CRC code R of length r must be generated and append to the data
 - This code will be used to check if the data is correct (similar to parity bit)
- The CRC code R is computed using a generator G
 - G is a sequence of predefined, static binary patterns
 - G has r+1 bits
 - Most significance bit (MSB) of G must be 1
 - Both sender and receiver knows G before the communication
 - Receiver uses G to verify the data

CRC Computation (2)

- CRC key concepts
 - We want a sequence of bits DR such that it is exactly divisible by G

- The division is done using modulo-2 arithmetic
- The sender uses D and G to compute R which yields such sequence
- Receiver divides the sequence by G
- If there is no remainder, then the data is correct

CRC Computation (3)

For the sender, the main computation is to compute R

$$R = \text{remainder of } \frac{D * 2^{\text{r}}}{G}$$

D * 2^r means appending r bits of 0 to D

Ex:
$$D = 101110$$
 and $r = 3$, we got $D * 2^r = 101110000$

- Now, as we have D * 2^r, let's see how division is done
- The modulo-arithmetic used in CRC requires XOR division
 - Addition or subtraction without carries or borrow

Dividing Binary

$$D = 101110$$

 $G = 1001$
 $r = 3$
Find R

Final Sequence: 101110 011

XOR Truth Table

	A=0	A=1
B=0	0	1
B=1	1	0

Receiver Test

- Dividing 101110011 with G
 - -G = 1001
 - If the remainder is zero, then the data are correct
- Anyone want to try?

CRC Considerations

- CRC is a very popular error detection method
- The main issue is G must be known by both sender and receiver
- There are standards for Gs with different sizes
 - They are used for different purposes
 - 16 bits: 100000000000101
 - 32 bits: 100000100110000010001110110110111

CRC Considerations (2)

- CRC can detect
 - All single-bit errors
 - All double-bit errors
 - All odd number of errors
 - All bursts error of length up to r bits
 - CRC-32 can detect up to 32-bit errors
- Burst errors larger than r can be detected with probability 1-0.5^r

Multiple Access Links

- Point-to-point links:
 - One pair of communication parties per link
 - Example: PPP for dial-up access, tin can telephone

- Broadcast link
 - Multiple access: Shared wired or wireless medium
 - Example:
 - Walkie-Talkie
 - Traditional Ethernet
 - 802.11 Wireless LAN
 - 2G/3G/4G mobile networks

Multiple Access Protocol

- Single broadcast channel shared by many nodes
- If more than one transmit (broadcast) frames at the same time, a collision occur
 - The receivers receive the collided frames
 - The frame involved in the collision are lost and the broadcast channel is wasted during the collision
- This is a very serious issue and a lot of multiple access protocols have been proposed to solve it
- These protocols are distributed algorithms that determine how node share channel (i.e., when the nodes can transmit)

Multiple Access Analogy

- In the real world, we always use multiple access protocols, e.g. in a class room
 - Students have to raise hands before the can speak
 - Teacher coordinates the medium access
 - You should not keep talking alone. Let others take turns to talk too
 - In a group discussion, you might not need teacher or any coordinator, just follow the protocol

Ideal Multiple Access Protocol

- If the broadcast channel has transmission rate of R bps
 - If one node wants to transmit, it can send the data at rate R
 - If M nodes want to transmit at the same time, each node can send at rate R/M
 - Fully decentralized
 - No central node that coordinate transmission e.g., Bluetooth uses a central node
 - No synchronization among nodes
 - Simple

Medium Access Protocol Categories

- Medium access protocols can be divided into:
 - Channel partitioning protocols
 - Divide a channel into smaller pieces (e.g., TDMA, FDMA)
 - Allocate each piece to a node
 - No collision
 - Random access protocols
 - Channel is not divided, collision is allowed
 - Sending nodes recover from collision
 - Taking-turns protocols
 - Nodes take turns to send
 - Nodes with more data to send might have to take longer turns

Channel Partitioning: TDMA

- TDMA: Time Division Multiple Access
 - Access channels in rounds
 - Each node is assigned with a fixed-length slot
 - Unused slots are wasted
 - No collision

Channel Partitioning: FDMA

- FDMA: Frequency Division Multiple Access
 - Channel spectrum is divided into frequency bands
 - Each node is assigned to a fixed band
 - Unused frequency band is wasted
 - No collision

TDM and FDM

- Some network technologies, e.g., GSM networks, use both TDM and FDM together
 - The frequency bands are divided into time slots
 - The frequency bands regulation is a national issue

Channel Partitioning: CDMA

CDMA: Code Division Multiple Access

- Each node is assigned with different unique code
- It uses the assigned code to encode the data bit to send
- In CDMA, different nodes can send data simultaneously
- Receivers can distinguish their data if they know the senders' codes
- Widely used in recent mobile networks (e.g. 3G)

Random Access Protocols

- When a node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- If two or more nodes transmit at the same time,
 collision occurs
- Random access protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access protocols:
 - Slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

- Improved variant of ALOHA protocol
- Setting:
 - Like TDMA, channel time is divided into slots
 - Each slot is equal to the time to transmit one frame
 - Node can send frames only at the beginning of slots
 - Nodes are synchronized: Determine when the slot begin
 - If two or mode nodes transmit in the same slot, all node detect collision

Slotted ALOHA (2)

- Sending operation:
 - When a node has a frame to send, it transmits in next slot
 - If there is no collision, the node can send new frame in next slot
 - If a collision occurs, node tries to retransmit the failed frame in each subsequent slot with probability p until success
 - That is, the node decides at the next slot, whether it should resend the frame with probability p

Slotted ALOHA (3)

Advantage

- Single active node transmit at full channel capacity
- Decentralized: Although require slots to be synchronized
- Simple

Disadvantage

- Collision slots are wasted
- Slots could also be wasted after collision
- Require synchronization

Pure ALOHA

- Developed in 1968 at the University of Hawaii
 - To be used in ALOHAnet
 - Aimed to connect several radio nodes scattered over Hawaiian Islands
 - It was the first radio packet network
- Sending operation:
 - If a node has a frame to send, send the frame
 - If the frames collide, back off and send later with probability p (similar to Slotted ALOHA)
 - Unlike Slotted ALOHA, no slot synchronization is done

Pure ALOHA (2)

- Pure ALOHA requires no synchronization
 - Simpler than slotted variance
 - Purely decentralized
- However, collision probability is worse than Slotted ALOHA
 - Caused by overlapping frames
 - Efficiency is only 50% compared to slotted ALOHA

Carrier Sense Multiple Access

- CSMA: Carrier Sense Multiple Access
- Both pure and slotted ALOHA transmit frames without checking if another node is sending
 - Why waste slots like that?
- Channel efficiency can be improved by
 - Listen to (sense) the carrier before transmitting
 - If collision is detected, stop sending
- Human analogy: Do not interrupt others when they are talking

CSMA Collision

- Even with carrier-sensing, collision can still occur
 - Due to propagation delay
 - The transmitting frame has not arrived other node who also has a frame to send
- Collision causes the entire packet transmission to to be wasted
- Collision probability depends on distance and propagation delay

CSMA with Collision Detection

- CSMA/CD: CSMA with Collision Detection
- Detect collision within a very short time
- Abort transmission when a collision is detected to reduce channel waste

Taking-Turns Protocols

- Channel partitioning protocols:
 - Efficient at high load: Share the channel fairly
 - Inefficient at low load: Time slots or frequency band are wasted
- Random access protocols:
 - Efficient at low load: Single node can fully utilize the channel
 - Inefficient at high load: Collision overhead
- Taking-turns protocols:
 - Find the best of both worlds

Taking-Turns Protocols Categories

Polling protocols

- A master node polls each slave node to transmit data in round-robin fashion
- Advantage: No collision
- Disadvantage: Polling causes overhead and if master node fails, the entire network fails too

Token passing protocols

- Special token is passed from one node to the next
- A node can send the data only if it has the token
- Advantage: No collision and no master node
- Disadvantage: We have to be sure that the token is passed throughout the nodes

Media Access Protocol: Summary

- We have discussed
 - Channel partitioning by time, frequency and code
 - Random partitioning
 - ALOHA, Slotted ALOHA
 - CSMA
 - CSMA/CD: Ethernet
 - Taking turns
 - Polling protocols: Bluetooth
 - Token passing: Fiber Distributed Data Interface (FDDI)
- We will discuss:
 - Link-layer addressing
 - Wired and wireless network technologies and protocols