ACM Tutorial: Dynamic Programming

Dr. Ukrit Watchareeruetai
Department of Engineering and Technology,
International College, KMITL

Contents

- Introduction to dynamic programming
${ }^{\circ}$ The Fibonacci sequence
- The binomial coefficient

Introduction to dynamic programming

The Fibonacci sequence

- The Fibonacci sequence is defined recursively as follows: $\quad f_{0}=0$

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

- The first few terms of the sequence are:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5, \text { etc. }
\end{aligned}
$$

Top-down approach

Algorithm 1.6: nth Fibonacci Term (Recursive)

Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs: fib, the nth term of the Fibonacci sequence.
int fib (int n)
\{
if ($n<=1$)
return n;
else
return fib (n - 1) + fib ($n-2$);
\}

Divide into two smaller instances that are almost as large as the original instance. Not good!

The Fibonacci sequence

- fib(3) is computed two times, while fib(2) is computed three times.

Dynamic programming

- Dynamic programming (DP) technique is similar to divide-and-conquer in that an instance of a problem is divided into smaller instances.
- However, we solve small instances first, store the results, and later, whenever we need a result, look it up instead of re-computing it.
- The term "dynamic programming" comes from control theory, and in this sense "programming" means the use of an array (table) in which a solution is constructed.

Dynamic programming

- The steps in the development of a DP algorithm are as follows:
- Establish a recursive property that gives the solution to an instance of the problem.
- Solve an instance of the problem in a bottomup fashion by solving smaller instances first.

Bottom-up approach

Algorithm 1.7: nth Fibonacci Term (Iterative)

Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs : fib2, the nth term in the Fibonacci sequence.

```
int fib 2 (int n)
{
    index i;
    int f[0.. n];
    f[ 0 ] = 0;
    if (n > 0)
        f[ 1 ] = 1;
            for (i = 2; i<= n; i++)
                f[ i ] = f[i - 1] + f [i -2 ];
        }
    return f[ n ];
}
```


The bi̊nomiol coefficicient

The binomial coefficient

- The binomial coefficient is given by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { for } 0 \leq k \leq n
$$

- For values of n and k that are not small, we cannot compute the binomial coefficient directly from this definition because n ! is very large even for moderate values of n.

The binomial coefficient

- We establish that

$$
\binom{n}{k}=\left\{\begin{array}{cc}
\binom{n-1}{k-1}+\binom{n-1}{k} & 0<k<n \\
1 & k=0 \text { or } k=n
\end{array}\right.
$$

- So we can eliminate the need to compute n ! or k ! by using this recursive property.
- This suggests the following divide-and-conquer algorithm.

Algorithm 3.1: Binomial Coefficient Using Divide-and-Conquer

Problem: Compute the binomial coefficient.
Inputs: nonnegative integers n and k, where $k \leq n$.

```
Outputs: \(b i n\), the binomial coefficient
```



```
int bin (int \(n\), int \(k\) )
i
    if \(\begin{aligned} & k==0| | n==k) \\ & \text { return } 1 ;\end{aligned}\)
    else
        return \(\operatorname{bin}(n-1, k-1)+\operatorname{bin}(n-1, k)\);
```

1

Binomial coefficient using divide-andconquer

- Like Algorithm 1.6 (Fibonacci, recursive), Algorithm 3.1 is very inefficient.
- It computes $2\binom{n}{k}-1$ terms to determine $\binom{n}{k}$.
- The problem is that the same instance are solved in each recursive.
- E.g., $\operatorname{bin}(n-1, k-1)$ and $\operatorname{bin}(n-1, k)$ both need the result of $\operatorname{bin}(n-2, k-1)$.

Binomial coefficient using DP

- The steps for constructing a DP algorithm for this problem are as follows:

1. Establish a recursive property. Written in terms of B, it is

$$
B[i][j]=\left\{\begin{array}{cc}
B[i-1][j-1]+B[i-1][j] & 0<j<i \\
1 & j=0 \text { or } j=i
\end{array}\right.
$$

2. Solve an instance of the problem in a bottom-up fashion by computing the rows in B in sequence starting with the first row.

Example 1

- Compute $B\left[4[2]=\binom{4}{2}\right.$
- Compute row 0:
- B [o] [o] = 1
- Compute row 1:
- B [1] [o] = 1
- B [1] [1] = 1
- Compute row 2:
- $B[2][\mathrm{o}]=1$
- B [2] [1] = $B[1][\mathrm{o}]+B[1][1]=1+1=2$
- $B[2][2]=1$

Example 1

- Compute row 3:
- B [3] [o] = 1
- $B[3][1]=B[2][0]+B[2][1]=1+2=3$
- $B[3][2]=B[2][1]+B[2][2]=2+1=3$
- Compute row 4:
- $B[4][\mathrm{o}]=1$
- $B[4][1]=B[3][0]+B[3][1]=1+3=4$
$B[4][2]=B[3][1]+B[3][2]=3+3=6$

Algorithm 3.2: Binomial Coefficient Using Dynamic Programming

Problem: Compute the binomial coefficient.
Inputs: nonnegative integers n and k, where $k \leq n$.

Outputs: bin 2, the binomial coefficient


```
int bin2 (int n, int k)
```

\{
index $i, j ;$
int $B[0 . . n]$ [0..k];
for $(i=0 ; i<=n ; i++$)
for $(j=0 ; j<=\operatorname{minimum}(i, k) ; j++)$
if $(j==0| | j==i)$
$B[i][\quad j]=1{ }^{\prime}$
else
$B[i[j]=B[i-1][j-1]+B[i-1][j] ;$
return $B[n[k]$;
\}

Binomial coefficient using DP

- By using DP instead of divide-and-conquer, we have developed a much more efficient algorithm.
- In both techniques, we find a recursive property that divides an instance into smaller instances.
- However, DP uses the recursive property to iteratively solve the instance in sequence, starting from the smallest instance, instead of blindly using recursion (as in divide-and-conquer).
- DP is a good technique to try when divide-andconquer leads to an inefficient algorithm.

