ACM Tutorial: Dynamic Programming (Part II)

Dr. Ukrit Watchareeruetai
Department of Engineering and Technology,
International College, KMITL

Contents

- Shortest path problem
- Floyd's algorithm for shortest paths

Shortest path problem

Directed-graph

Graph representation

- We represent a weighted graph containing n vertices by an array W where

$$
W[i][j]=\left\{\begin{array}{cc}
\text { wieght onedge } & \text { if there is anedge from } v_{i} \text { to } v_{j} \\
\infty & \text { if thereis no edge from } v_{i} \text { to } v_{j} \\
0 & \text { if } i=j
\end{array}\right.
$$

- This array is called the adjacency matrix.

Graph representation

Path

- Path is a sequence of vertices such that there is an edge from each vertex to its successor.
- E.g., the sequence $\left[v_{1}, v_{4}, v_{3}\right]$ is a path because there is an edge from v_{1} to v_{4} and an edge from v_{4} to v_{3}.
- The sequence $\left[v_{3}, v_{4}, v_{1}\right]$ is not a path because there is no edge from v_{4} to v_{1}.

Shortest path problem

- The length of a path in a weighted graph is the sum of the weights on the path.
- A problem in many applications is finding the shortest paths from each vertex to all other vertices.

Floyd? algorithm for shortest paths

Adjacency matrix

	1	2	3	4	5
1	0	1	∞	1	5
2	9	0	3	2	∞
3	∞	∞	0	4	∞
4	∞	∞	2	0	3
5	3	∞	∞	∞	0

w
D contains the length of the shortest paths

	1	2	3	4	5
1	0	1	3	1	4
2	8	0	3	2	5
3	10	11	0	4	7
4	6	7	2	0	3
5	3	4	6	4	0
			D		

- If we can develop a way to calculate the values in D from those in W , we will have an algorithm for the shortest path problem.

Solving shortest path problem using DP

- We accomplish this by creating a sequence of $n+1$ arrays $D^{(k)}$, where $O \leq k \leq n$ and where
$D^{(k)}[i][j]=$ length of a shortest path from v_{i} to v_{j} using only vertices in the set $\left\{v_{1}, v_{2}\right.$, $\left.\ldots, v_{k}\right\}$ as intermediate vertices.

Example

- Calculate $D^{(k)}[2][5]$ for the above graph.
- $D^{(o)}[2][5]=$ length $\left[v_{2}, v_{5}\right]=\infty$
- $D^{(1)}[2][5]=\min \left(\right.$ length $\left[v_{2}, v_{5}\right]$, length $\left.\left[v_{2}, v_{1}, v_{5}\right]\right)$ $=\min (\infty, 14)=14$
- $D^{(2)}[2][5]=D^{(1)}[2][5]=14$
- They are equal because a shortest path starting from v_{2} cannot pass through v_{2}.

Example

- Calculate $D^{(k)}[2][5]$ for the above graph.
- $D^{(3)}[2][5]=D^{(2)}[2][5]=14$
- Including v_{3} yields no new paths from v_{2} to v_{5}.
- $D^{(4)}[2][5]=\min \left(\right.$ length $\left[v_{2}, v_{1}, v_{5}\right]$, length $\left[v_{2}, v_{4}, v_{5}\right]$, length $\left[v_{2}, v_{1}, v_{4}, v_{5}\right]$, length $\left.\left[v_{2}, v_{3}, v_{4}, v_{5}\right]\right)$ $=\min (14,5,13,10)=5$

Example

- Calculate $D^{(k)}[2][5]$ for the above graph.
- $D^{(5)}[2][5]=D^{(4)}[2][5]=5$
- They are equal because a shortest path ending at v_{5} cannot pass through v_{5}.
- The last value computed, $D^{(5)}[2][5]$, is the length of a shortest path from v_{2} to v_{5} that is allowed to pass through any of the other vertices.

Solving shortest path problem using DP

- Because $D^{(n)}[i][j]$ is the length of a shortest path from v_{i} to v_{j} that is allowed to pass through any of the other vertices, it is the length of a shortest path from v_{i} to v_{j}.
- Because $D^{(o)}[i][j]$ is the length of a shortest path that is not allowed to pass through any other vertices, it is the weight on the edge from v_{1} to v_{j}.
- We have established that

$$
D^{(o)}[i][j]=W \text { and } D^{(n)}[i][j]=D
$$

Solving shortest path problem using DP

- To determine D from W, we need only find a way to obtain $D^{(n)}$ from $D^{(o)}$.
- The steps for using dynamic programming to accomplish this are as follows:
- Establish a recursive property (process) with which we can compute $D^{(k)}$ from $D^{(k-1)}$.
- Solve an instance of the problem in a bottom$u p$ fashion by repeating the process (established in Step 1) for $k=1$ to n. This creates the sequence

Solving shortest path problem using DP

- We accomplish the step by considering two cases:
- Case 1: All shortest paths from v_{i} to v_{j}, using only vertices in $\left\{v_{1}, v_{2} \ldots, v_{k}\right\}$ as intermediate vertices, do not use v_{k}.
- Case 2: At least one shortest path from v_{i} to v_{j}, using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ as intermediate vertices, does use v_{k}.

Solving shortest path problem using DP

- Case 1: All shortest paths from v_{i} to v_{j}, using only vertices in $\left\{v_{1}, v_{2} \ldots, v_{k}\right\}$ as intermediate vertices, do not use v_{k}.
- Then

$$
D^{(k)}[i][j]=D^{(k-1)}[i][j]
$$

- As in the previous example, $D^{(3)}[2][5]=D^{(2)}[2][5]=14$
- Including v_{3} yields no new paths from v_{2} to v_{5}.

Solving shortest path problem using DP

- Case 2: At least one shortest path from v_{1} to v_{j}, using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ as intermediate vertices, does use v_{k}.

A shortest path from v_{i} to $v_{j} u s i n g$ only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- In the second case,

$$
D^{(k)}[i][j]=D^{(k-1)}[i][k]+D^{(k-1)}[k][j]
$$

Case 2: explanation

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- Because v_{k} cannot be an intermediate vertex on the subpath from v_{i} to v_{k}, that subpath uses only vertices in $\left\{v_{1}, v_{2} \ldots, v_{k-1}\right\}$ as intermediates.
- This implies that the subpath's length must be equal to $D^{k-1}[i][k]$ for the following two reasons.

Case 2: explanation

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- First, the subpath's length cannot be shorter because $D^{(k-1)}[i][k]$ is the length of a shortest path from v_{1} it v_{k} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ as intermediates.

Case 2: explanation

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- Second, the subpath's length cannot be longer because if it were, we could replace it in the figure by a shortest path, which contradicts that fact that the entire path in the figure is a shortest path.

Case 2: explanation

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- Similarly, the length of the subpath from v_{k} to v_{j} in the figure must be equal to $D^{(k-1)}$ [k] [j].

Solving shortest path problem using DP

A shortest path from v_{i} to v_{j} using only vertices in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

- Therefore, in the second case

$$
D^{(k)}[i][j]=D^{(k-1)}[i][k]+D^{(k-1)}[k][j]
$$

Solving shortest path problem using DP

- Because we must have either case 1 or case 2 , the value of $D^{(k)}[i][j]$ is the minimum of the values on the right hand side in the equalities in both cases.
- That is

$$
D^{(k)}[i][j]=\min \left(D^{(k-1)}[i][j], D^{(k-1)}[i][k]+D^{(k-1)}[k][j]\right)
$$

Example

- To compute $D^{(2)}[5][4]$, we have to compute
- $D^{(1)}[5][4]=\min \left(D^{(o)}[5][4], D^{(o)}[5][1]+D^{(o)}[1][4]\right)$

$$
=\min (\infty, 3+1)=4
$$

- $D^{(1)}[5][2]=\min \left(D^{(o)}[5][2], D^{(o)}[5][1]+D^{(o)}[1][2]\right)$

$$
=\min (\infty, 3+1)=4
$$

- $D^{(1)}[2][4]=\min \left(D^{(0)}[2][4], D^{(0)}[2][1]+D^{(0)}[1][4]\right)$

$$
=\min (2,9+1)=2
$$

- Therefore,

$$
\begin{aligned}
-D^{(2)}[5][4]= & \min \left(D^{(1)}[5][4], D^{(1)}[5][2]+D^{(1)}[2][4]\right) \\
& =\min (4,4+2)=4
\end{aligned}
$$

Floyd's algorithm for shortest path

Algorithm 3.3: Floyd's Algorithm for Shortest Paths

Problem: Compute the shortest paths from each vertex in a weighted graph to each of the other vertices. The weights are nonnegative numbers.

Inputs: A weighted, directed graph and n, the number of vertices in the graph. The graph is represented by a two-dimensional array W which has both its rows and columns indexed from 1 to n, where Wil[] is the weight on the edge from the ith vertex to the fth vertex.

Outputs: A two-dimensional array D, which has both its rows and columns indexed from 1 to n, where $D[7][]$ is the length of a shortest path from the ith vertex to the jth vertex.

```
void floyd (int n
    const number W[] []
    number D[] []
{
index i, j, k;
D = V;
for (k = 1; k<=n; k++)
        for (i = 1; i <= n; i++)
            for (j = 1; j <= n; j++)
            D[i][j] = minimum(D[i][j], D[i][k] + D[k][j]);
```

\}

