Reference textbook: R. Napolitan and K. Naimipour, Foundations of Algorithms (4th ed.), Jones and Bartlett, 2011

ACM Tutorial: Dynamic Programming (Part II)

Dr. Ukrit Watchareeruetai

Department of Engineering and Technology, International College, KMITL

International College, KMITL: Gateway to Professional Success in the International Arena

Contents

- Shortest path problem
- Floyd's algorithm for shortest paths

International College, KMITL: Gateway to Professional Success in the International Arena

3

Shortest path problem

International College, KMITL: Gateway to Professional Success in the International Arena

4

Graph representation

• We represent a weighted graph containing *n* vertices by an array *W* where

 $W[i][j] = \begin{cases} wieght on edge & if there is an edge from v_i to v_j \\ \infty & if there is no edge from v_i to v_j \\ 0 & if i = j \end{cases}$

• This array is called the *adjacency matrix*.

International College, KMITL: Gateway to Professional Success in the International Arena

Graph representation

- Path is a sequence of vertices such that there is an edge from each vertex to its successor.
 - E.g., the sequence [v₁, v₄, v₃] is a path because there is an edge from v₁ to v₄ and an edge from v₄ to v₃.
 - The sequence [v₃, v₄, v₁] is not a path because there is no edge from v₄ to v₁.

Shortest path problem

- The *length* of a path in a weighted graph is the *sum of the weights* on the path.
- A problem in many applications is finding the *shortest paths* from each vertex to all other vertices.

International College, KMITL: Gateway to Professional Success in the International Arena

Floyd's algorithm for shortest paths

	Adjacency matrix						D contains the length of the shortest paths					
-		1	2	3	4	5		1	2	3	4	5
	1	0	1	8	1	5	1	0	1	3	1	4
	2	9	0	3	2	8	2	8	0	3	2	5
	3	∞	80	0	4	80	3	10	11	0	4	7
	4	∞	00	2	0	3	4	6	7	2	0	3
	5	з	8	80	œ	0	5	3	4	6	4	0
				W						D		

• If we can develop a way to calculate the values in D from those in W, we will have an algorithm for the shortest path problem.

• We accomplish this by creating a sequence of n + 1 arrays $D^{(k)}$, where $0 \le k \le n$ and where

 $D^{(k)}[i][j] = \text{length of a shortest path from}$ v_i to v_j using only vertices in the set $\{v_1, v_2, ..., v_k\}$ as intermediate vertices.

Example

- Calculate $D^{(k)}[2][5]$ for the above graph.
 - □ $D^{(0)}[2][5] = length[v_2, v_5] = \infty$
 - □ $D^{(1)}[2][5] = min(length[v_2, v_5], length[v_2, v_1, v_5])$ = $min(\infty, 14) = 14$
 - $D^{(2)}[2][5] = D^{(1)}[2][5] = 14$
 - They are equal because a shortest path starting from v_2 cannot pass through v_2 .

- Calculate $D^{(k)}[2][5]$ for the above graph.
 - D⁽³⁾[2][5] = D⁽²⁾[2][5] = 14
 Including v₃ yields no new paths from v₂ to v₅.

 $\begin{array}{l} D^{(4)}[2][5] = min(length[v_2, v_1, v_5], length[v_2, v_4, v_5],\\ length[v_2, v_1, v_4, v_5], length[v_2, v_3, v_4, v_5])\\ = min(14, 5, 13, 10) = 5 \end{array}$

- Calculate $D^{(k)}[2][5]$ for the above graph.
 - $\ \ D^{(5)}[2][5] = D^{(4)}[2][5] = 5$
 - They are equal because a shortest path ending at v_5 cannot pass through v_5 .
 - The last value computed, D⁽⁵⁾[2][5], is the length of a shortest path from v₂ to v₅ that is allowed to pass through any of the other vertices.

- Because *D⁽ⁿ⁾ [i][j]* is the length of a shortest path from *v_i* to *v_j* that is allowed to pass through any of the other vertices, it is the length of a shortest path from *v_i* to *v_j*.
- Because D^(o)[i][j] is the length of a shortest path that is not allowed to pass through any other vertices, it is the weight on the edge from v₁ to v_j.
- We have established that

 $D^{(o)}[i][j] = W \text{ and } D^{(n)}[i][j] = D$

- To determine D from W, we need only find a way to obtain $D^{(n)}$ from $D^{(o)}$.
- The steps for using dynamic programming to accomplish this are as follows:
 - *Establish* a recursive property (process) with which we can compute $D^{(k)}$ from $D^{(k-1)}$.
 - Solve an instance of the problem in a *bottom-up* fashion by repeating the process (established in Step 1) for *k* = 1 to *n*. This creates the sequence

 $-D^o, D^1, D^2, ..., D^n \smile$

- We accomplish the step by considering two cases:
 - Case 1: All shortest paths from v_i to v_j, using only vertices in {v₁, v₂..., v_k} as intermediate vertices, *do not use v_k*.

Case 2: At least one shortest path from v_i to v_j, using only vertices in {v₁, v₂, ..., v_k} as intermediate vertices, *does use* v_k.

- *Case 1:* All shortest paths from v_i to v_j, using only vertices in {v₁, v₂..., v_k} as intermediate vertices, do not use v_k.
- Then

$$D^{(k)}[i][j] = D^{(k-1)}[i][j]$$

- As in the previous example, $D^{(3)}[2][5] = D^{(2)}[2][5] = 14$
 - Including v_3 yields no new paths from v_2 to v_5 .

Case 2: At least one shortest path from v₁ to v_j, using only vertices in {v₁, v₂, ..., v_k} as intermediate vertices, does use v_k.

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

20

Solving shortest path problem using DP

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

A shortest path from v_i to v_k using only vertices in $\{v_1, v_2, \dots, v_k\}$ A shortest path from v_k to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

• In the second case,

$$D^{(k)}[i][j] = D^{(k-1)}[i][k] + D^{(k-1)}[k][j]$$

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

- Because v_k cannot be an intermediate vertex on the subpath from v_i to v_k, that subpath uses only vertices in {v₁, v₂..., v_{k-1}} as intermediates.
- This implies that the subpath's length must be equal to D^{k-1} [i] [k] for the following two reasons.

21

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

First, the subpath's length cannot be shorter
 because D^(k-1)[i][k] is the length of a shortest path
 from v₁ it v_k using only vertices in {v₁, v₂, ..., v_{k-1}}
 as intermediates.

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

 Second, the subpath's length cannot be longer because if it were, we could replace it in the figure by a shortest path, which contradicts that fact that the entire path in the figure is a shortest path. 23

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

 Similarly, the length of the subpath from v_k to v_j in the figure must be equal to D^(k-1) [k] [j].

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

A shortest path from v_i to v_k using only vertices in $\{v_1, v_2, \dots, v_k\}$ A shortest path from v_k to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

• Therefore, in the second case

$$D^{(k)}[i][j] = D^{(k-1)}[i][k] + D^{(k-1)}[k][j]$$

25

• Because we must have either case 1 or case 2, the value of $D^{(k)}[i][j]$ is the minimum of the values on the right hand side in the equalities in both cases.

• That is

 $D^{(k)}[i][j] = min(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j])$

26

Example

- To compute $D^{(2)}[5][4]$, we have to compute
 - $D^{(1)}[5][4] = min(D^{(0)}[5][4], D^{(0)}[5][1] + D^{(0)}[1][4])$ = $min(\infty, 3 + 1) = 4$
 - $D^{(1)}[5][2] = min(D^{(0)}[5][2], D^{(0)}[5][1] + D^{(0)}[1][2])$ = $min(\infty, 3 + 1) = 4$
 - $D^{(1)}[2][4] = min(D^{(0)}[2][4], D^{(0)}[2][1] + D^{(0)}[1][4])$ = min(2, 9 + 1) = 2

• Therefore,

 $D^{(2)}[5][4] = min(D^{(1)}[5][4], D^{(1)}[5][2] + D^{(1)}[2][4])$ = min(4, 4 + 2) = 4

Floyd's algorithm for shortest path

Algorithm 3.3: Floyd's Algorithm for Shortest Paths

Problem: Compute the shortest paths from each vertex in a weighted graph to each of the other vertices. The weights are nonnegative numbers.

Inputs: A weighted, directed graph and *n*, the number of vertices in the graph. The graph is represented by a two-dimensional array *W* which has both its rows and columns indexed from 1 to *n*, where *W*[*i*][*j*] is the weight on the edge from the *i*th vertex to the *j*th vertex.

Outputs: A two-dimensional array D, which has both its rows and columns indexed from 1 to n, where D[i] [j] is the length of a shortest path from the *i*th vertex to the *j*th vertex.