
Advanced Object-Oriented

Programming

Dr. Kulwadee Somboonviwat
International College, KMITL

kskulwad@kmitl.ac.th

Introduction to OOP and Java

mailto:kskulwad@kmitl.ac.th

Course Objectives

• Solidify object-oriented programming skills

• Study the Java Technology

– The Java Programming Language

– The Java Platform, Enterprise Edition (Java EE 7)

Key Topics covered in this course

• Fundamentals of Java Programming

• Object-oriented programming concepts

• GUI Programming

• Concurrency

• Java EE 7

Object-Oriented Programming

• Dominant programming paradigm these days

• A program is made of objects.

• Each object

– exposes specific functionality to the users

– encapsulates (hides) the implementation of its

functionality

Traditional Procedural Programming

• 1970s: “structured”, procedural programming

– Programs = Algorithms + Data (Niklaus Wirth, 1975)

• First, we think about a set of procedures (algorithms)

needed to solve our problem.

• Then, we find appropriate ways to store the data

– Used in C, Pascal, Basic, etc.

– Structured programming works well for small to

medium sized problems

Global Data

procedure

procedure

procedure

procedure

procedure

procedure

 In procedural programming,
 - problem is decomposed into procedures
 - all procedures manipulate a set of global data

Suppose that …
- your program has 2,000 procedures
- a piece of data is in an incorrect state

How are you going to find bugs
 in this situation?

How many procedures you need to
search for the culprit?

method

method

 In object-oriented programming style,
 - your program consists of objects
 - each object has a specific set of attributes and methods

Suppose that …
- your program has 200 objects,
 and each object has 10 methods.
- a piece of data of an object
 is in an incorrect state

How are you going to find bugs
 in this situation?

How many procedures you need to
search for the culprit?

Object data

method

method

Object data

method

method

Object data

Java Technology

The Java
Programming Language

The Java Platform

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Characteristics of the Java PL

• Simple

• Object oriented

• Distributed

• Multithreaded

• Dynamic

• Architecture neutral

• Portable

• High Performance

• Robust

• Secure

C++ versus Java

Features Java C++

Data types Supports both primitive
scalar types and classes

Supports both primitive
scalar types and classes

Object allocation Allocated from heap,
accessed through

reference variables
(no pointers)

Allocated from heap or
stack, accessed through

reference variables or
pointers

Object de-allocation Implicit
(garbage collection)

Explicit
(delete operator)

Inheritance Single inheritance only
(multiple inheritance is

possible with interfaces)

Single, Multiple
inheritance

Binding All binding of messages
to methods are dynamic

except in the case of
methods that cannot be

overridden

Dynamic binding of
messages to methods are

optional (using the
virtual keyword)

Java Technology

The Java
Programming Language

The Java Platform

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java As a
Programming Platform

• A platform is the hardware or software environment in which a
program runs.
– E.g. Windows, Linux, Solaris OS, and Mac OS

• Java is a software-only platform that runs on top of other

hardware-based platforms. It consists of

– The Java Virtual Machine: a software-based processor that

presents its own instruction set

– The Java Application Programming Interface (API)

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Different Editions of the Java Platform

• Java Platform, Standard Edition (Java SE):

– stand-alone programs that run on desktops.

– applets (programs that run in the context of a web browser)

• Java Platform, Enterprise Edition (Java EE):

– built on top of Java SE.

– enterprise-oriented applications and servlets (server

programs that conform to Java EE’s Servlet API).

• Java Platform, Micro Edition (Java ME):

– MIDlets (programs that run on mobile information devices)

– Xlets (which are programs that run on embedded devices)

Java Jargon

The Java API is a large collection of
ready-made software components that
provide many useful capabilities.

It is grouped into libraries of related classes
and interfaces; these libraries are known
as packages

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java Software Development Process

• Write the source code and save in files with .java extension

• Compile the source code into .class files using the javac compiler

• A .class file contains bytecodes

 (the machine language of the Java Virtual Machine (Java VM)

• Run the application (with an instance of the Java VM)

 using the java launcher tool.

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java Program Execution

• The java tool loads and starts the VM, and passes the

program’s main classfile (.class) to the machine

• The VM uses classloader to load the classfile

• The VM’s bytecode verifier checks that the classfile’s

bytecode is valid and does not compromise security

– If the bytecode has any problem, the verifier terminates the VM

• If all is well with the bytecode, the VM’s interpreter

interprets the bytecode one instruction at a time

* Interpretation consists of identifying bytecode instructions , and executing
equivalent native instructions (instructions understood by the physical processor)

• The Java platform provides an abstraction over the underlying
hardware/OS platform
– Portability: the same .class files can run unchanged on a variety of

hardware platforms and operating systems

$ java HelloWorldApp
(1)Load the JVM
(2)classloader loads HelloWorldApp.class
(3)bytecode verifier check that the classfile
is valid and secure
(4)If all is well, the interpreter interpret the
bytecode
(5)A section of frequently executed bytecode
will be compiled to native code by the JIT (Just
In Time) compiler

$ javac HelloWorldApp.java

What can Java Technology Do?

• Development Tools: javac, java, javadoc

• Rich APIs

• Deployment Technologies: Web Start, Java

Plug-In

• User Interface Toolkits

• Integration libraries: JDBC, JNDI, RMI

Java Basics

 - (simple) Program Structure

 - Comments

A Simple Java Program

/**

 * File: FirstSample.java

 * This is our first sample program in Java

 * @version 1

 * @author Kulwadee

 */

public class FirstSample

{

 public static void main(String[] args)

 {

 System.out.println(“Welcome to Java!”);
 }

}

Access modifier

class keyword : everything in java

program must be inside a class!

class name: starts with a letter,

followed by any number of letters or digits

The main method:

the method that every java

program MUST have!

A Simple Java Program :
output a line of message to console

 System.out.println(“Welcome to Java!”);

Object.method(parameters)

Now.. Let’s compile and run our first program!

C:\> javac FirstSample.java

C:\> dir FirstSample.*

FirstSample.java FirstSample.class

C:\> java FirstSample

Welcome to Java!

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

Primitive Data Types (1/3)

Type

Description

Size

int

The integer type, with range

-2,147,483,648 . . . 2,147,483,647

4 bytes

byte

The type describing a single byte, with

range -128 . . . 127

1 byte

short

The short integer type, with range

-32768 . . . 32767

2 bytes

long

The long integer type, with range

-9,223,372,036,854,775,808 . . .

9,223,372,036,854,775,807

8 bytes

Primitive Types

Type

Description

Size

double

The double-precision floating-point type,

with a range of about ±10
308

 and about 15

significant decimal digits

8

bytes

float

The single-precision floating-point type,

with a range of about ±10
38
 and about 7

significant decimal digits

4

bytes

Primitive Types

 Primitive Data Types (2/3)

Type

Description

Size

char

The character type, representing code

units in the Unicode encoding scheme

2 bytes

boolean

The type with the two truth

values false and true

1 bit

Primitive Types

 Primitive Data Types (3/3)

- Statically typed :

every variable must be declared with a data type.

(vs. dynamically typed)

- Strongly typed :

 JVM keeps track of all variable types. Once a variable is declared,
its data type cannot be changed.

(vs. weakly typed)

What about these languages?

 C++

 C

 Python

Java is a statically, strongly typed language

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

 - Declaring Variables

Types and Variables

Syntax 2.1: Variable Definition

typeName variableName = value;

 or

typeName variableName;

Example:

 String greeting = "Hello, AOOP!";
 double salary = 65000.0;
Purpose:
 To define a new variable of a particular type and optionally supply an initial value

Identifiers

• Identifier: name of a variable, method, or class

• Rules for identifiers in Java:

– Can be made up of letters, digits, and the underscore
(_) character

– Cannot start with a digit

– Cannot use other symbols such as ? or %

– Spaces are not permitted inside identifiers

– You cannot use reserved words

– They are case sensitive

• Convention:

– variable names start with a lowercase letter

– class names start with an uppercase letter

Number Types

• int: integers, no fractional part

 1, -4, 0

• double: floating-point numbers (double precision)

 0.5, -3.11111, 4.3E24, 1E-14

• A numeric computation overflows if the result falls

outside the range for the number type

 int n = 1000000;

 System.out.println(n * n); // prints -727379968

Number Types: Floating-point

• Rounding errors occur when an exact conversion between

 numbers is not possible
 double f = 4.35;
 System.out.println(100 * f); // prints 434.99999999999994

• Java: Illegal to assign a floating-point expression to an

 integer variable
 double balance = 13.75;
 int dollars = balance; // Error

• Casts: used to convert a value to a different type
 int dollars = (int) balance; // OK

• Cast discards fractional part.

• Math.round converts a floating-point number to nearest integer
 long rounded = Math.round(balance);
 // if balance is 13.75, then rounded is set to 14

Cast

 Cast: used to convert a value to a different type
 discard fractional part

Syntax 2.2: Cast

 (typeName) expression

Example:

 (int) (balance * 100)

Purpose:
 To convert an expression to a different type

Constants: final

• A final variable is a constant

• Once its value has been set, it cannot be changed

• Named constants make programs easier to read and maintain

• Convention: use all-uppercase names for constants

 final double QUARTER_VALUE = 0.25;

 final double DIME_VALUE = 0.1;

 final double NICKEL_VALUE = 0.05;

 final double PENNY_VALUE = 0.01;

 payment = dollars + quarters * QUARTER_VALUE +

 dimes * DIME_VALUE +

 nickels * NICKEL_VALUE +

 pennies * PENNY_VALUE;

Constants: static final

• If constant values are needed in several methods,

 declare them together with the instance fields of a class

 and tag them as static and final

• Give static final constants public access to enable other

 classes to use them

 public class Math

 {

 . . .

 public static final double E = 2.7182818284590452354;

 public static final double PI = 3.14159265358979323846;

 }

 double circumference = Math.PI * diameter;

Constant Definition

Syntax 2.3: Constants

In a method:
final typeName variableName = expression ;

In a class:
accessSpecifier static final typeName variableName = expression;

Example:

 final double NICKEL_VALUE = 0.05;

 public static final double LITERS_PER_GALLON = 3.785;

Purpose:
 To define a constant in a method or a class

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

 - Declaring Variables

 - Operators

Operators

• Assignment (=), Increment (++), Decrement (--)

• Arithmetic Operators

 + - * / %

• Relational Operators

 < <= > >= == !=

• Logical Operators

 ! && || ^

Assignment, Increment, Decrement

• Assignment is not the same as mathematical equality:

 items = items + 1;

• Increment

 items++ is the same as items = items + 1

• Decrement

 items-- subtracts 1 from items

Arithmetic Operations

• / is the division operator

 If both arguments are integers, the result is an integer.

 The remainder is discarded

 7.0 / 4 yields 1.75

 7 / 4 yields 1

• Get the remainder with % (pronounced "modulo")

 7 % 4 is 3

The Math class

• Math class: contains methods like sqrt and pow

• To compute xn, you write Math.pow(x, n)

• To take the square root of a number, use the Math.sqrt;

 for example, Math.sqrt(x)

• In Java,

can be represented as

 (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

The Math class

Mathematical Methods in Java

Math.sqrt(x)

square root

Math.pow(x, y)

power xy

Math.exp(x)

ex

Math.log(x)

natural log

Math.sin(x), Math.cos(x), Math.tan(x)

sine, cosine, tangent (x in radian)

Math.round(x)

closest integer to x

Math.min(x, y), Math.max(x, y)

minimum, maximum

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

 - Declaring Variables

 - Operators

 - String

String
• A string is a sequence of characters

• Strings are objects of the String class

• String constants:
 "Hello, World!"

• String variables:
 String message = "Hello, World!";

• String length:
 int n = message.length();

• Empty string: ""

String Operations (1)

• Concatenation

– Use the + operator:String name = "Dave";
String message = "Hello, " + name;

// message is "Hello, Dave"

– If one of the arguments of the + operator is a string, the
other is converted to a stringString a = "Agent";
int n = 7;

String bond = a + n; // bond is Agent7

String Operations (2)
• Substring

 String greeting = "Hello, World!";
String sub = greeting.substring(0, 5);
// sub is "Hello“

– Supply start and “past the end” position

String Operations (3)
• Testing Strings for Equality

 - use the equals method

 s.equals(t)

 - Do not use == to test if two strings are equal!!

 it only determines if the strings are stored in the
same location or not.

 String greeting = “hello”;
if (greeting.equals(“hello”))
{

 System.out.println(“they are equal!”);
}

else

{

 System.out.println(“they aren’t equal!”);
}

String greeting = “hello”;
if (greeting == “hello”))
{

 // probably true

}

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

 - Declaring Variables

 - Operators

 - String

 - Basic IO (console)

Writing Output

• for simple stand-alone java program,

 System.out.println(data)

System.out (standard output) :

 a static PrintStream object declared in class System

(java.lang.System)

println method

 Print an object (i.e. data) to the standard output stream

Reading Input

• System.in has minimal set of features–it can only read

 one byte at a time

• In Java 5.0, Scanner class was added to read keyboard

 input in a convenient manner

 import java.util.Scanner;

 Scanner in = new Scanner(System.in);

 System.out.print("Enter quantity: ");

 int quantity = in.nextInt();

Note:

nextDouble reads a double

nextLine reads a line (until user hits Enter)

nextWord reads a word (until any white space)

Java Basics

 - (simple) Program Structure

 - Comments

 - Primitive Data Types

 - Declaring Variables

 - Operators

 - String

 - Basic IO (console)

 - Control Structures

Control Structures

• Java supports both conditional statements and loops to

determine the control flow of a program

Decisions

• if statement

Decisions

• if/else statement

if statement

Syntax 2.4: if statement

 if (condition) if (condition)

{ {

 statement statement1

} }

 else

 {

 statement2

 }

Example:

 if (amount <= balance) balance = balance - amount;

 if (amount <= balance)

 balance = balance - amount;

 else

 balance = balance - OVERDRAFT_PENALTY;
 Purpose:

 To execute a statement when a condition is true or false

Exercise: implement this loop in Java

while loop

• Executes a block of code repeatedly

• A condition controls how often the loop is executed

 while (condition)

 statement;

- Most commonly, the statement is a block statement (set of

statements delimited by { })

while loop

Year

Balance

0

$10,000

1

$10,500

2

$11,025

3

$11,576.25

4

$12,155.06

5

$12,762.82

Calculating the Growth of an Investment

Invest $10,000, 5% interest, compounded

annually

When has the bank account

reached a target balance of

$500,000 ?

while loop

Calculating the Growth of an Investment

Invest $10,000, 5% interest, compounded

annually

When has the bank account

reached a target balance of

$500,000 ?

while statement

Syntax 2.5: while statement

while (condition)

 statement

Example:

 while (balance < targetBalance)

 {

 year++;

 double interest = balance * rate / 100;

 balance = balance + interest;

 }

 Purpose:

 To repeatedly execute a statement as long as a condition is true

for loop

for (initialization; condition; update)

 statement
Example:

for (int i = 1; i <= n; i++)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

 equivalent to

 initialization;

 while (condition) { statement; update; }

Examples:

for (years = n; years > 0; years--) . . .

for (x = -10; x <= 10; x = x + 0.5) . . .

for loop

for (int i = 1; i <= n; i++)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

for statement

Syntax 2.6: for statement

 for (initialization; condition; update)

 statement

Example:

 for (int i = 1; i <= n; i++)

 {

 double interest = balance * rate / 100;

 balance = balance + interest;

 }

 Purpose:

 To execute an initialization, then keep executing a statement and

 updating an expression while a condition is true

Summary
• fundamentals of Java language

• program structure, comment

• primitive data types

• variables

• control flows

• Java API’s classes: Math , String

• Console I/O

 - Input (Scanner class)

 - Output (System.out class)

Additional Readings

• The Java Tutorials : Getting Started,

 http://docs.oracle.com/javase/tutorial/getStarted/TOC.html

• The Java Language Environment,

 http://www.oracle.com/technetwork/java/langenv-140151.html

http://docs.oracle.com/javase/tutorial/getStarted/TOC.html
http://docs.oracle.com/javase/tutorial/getStarted/TOC.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html

