Advanced Object-Oriented
Programming

Introduction to OOP and Java

Dr. Kulwadee Somboonviwat
International College, KMITL
kskulwad@kmitl.ac.th

mailto:kskulwad@kmitl.ac.th

Course Objectives

 Solidify object-oriented programming skills
 Study the Java Technology

— The Java Programming Language

— The Java Platform, Enterprise Edition (Java EE 7)

Key Topics covered in this course

Fundamentals of Java Programming
Object-oriented programming concepts
GUI Programming

Concurrency

Java EE 7

Object-Oriented Programming

* Dominant programming paradigm these days
» A program is made of objects.
* Each object

— exposes specific functionality to the users

— encapsulates (hides) the implementation of its

functionality

Traditional Procedural Programming

* 1970s: structured’, procedural programming

— Programs = Algorithms + Data (Niklaus Wirth, 1975)

» First, we think about a set of procedures (algorithms)

needed to solve our problem.

* Then, we find appropriate ways to store the data
— Used in C, Pascal, Basic, etc.

— Structured programming works well for small to

medium sized problems

In procedural programming,
- problem is decomposed into procedures
- all procedures manipulate a set of global data

procedure
procedure

procedure

procedure
procedure

procedure

Global Data

Suppose that ...
- your program has 2,000 procedures
- a piece of data is in an incorrect state

How are you going to find bugs
in this situation?

How many procedures you need to
search for the culprit?

In object-oriented programming style,
- your program consists of objects
- each object has a specific set of attributes and methods

method

method

method

method

method

method

Object data

Object data

Object data

Suppose that ...
- your program has 200 objects,
and each object has 10 methods.
- a piece of data of an object
1S In an incorrect state

How are you going to find bugs
in this situation?

How many procedures you need to
search for the culprit?

= Java Technology

Java

The Java

i The Java Platform
Programming Language

—\ 0]
Emﬁ;ﬂ%.\ MyProgram, java
MyProgram, java MyProgram. class AF' |
My Program Java
EENE Java Virtual Machine platform
public static void main (String[] args) {

System,out.println("Hello World!”);

}
}

HelloWorldApp.java

Hardware-Based Platform

e

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Simple * Architecture neutral

Object oriented * Portable
Distributed * High Performance
Multithreaded * Robust

Dynamic * Secure

Features JEAC! C++
Data types Supports both primitive | Supports both primitive
scalar types and classes scalar types and classes
Object allocation Allocated from heap, Allocated from heap or
accessed through stack, accessed through
reference variables reference variables or
(no pointers) pointers
Object de-allocation Implicit Explicit

(garbage collection)

(delete operator)

Inheritance Single inheritance only Single, Multiple
(multiple inheritance is inheritance
possible with interfaces)
Binding All binding of messages Dynamic binding of

to methods are dynamic
except in the case of
methods that cannot be
overridden

messages to methods are
optional (using the
virtual keyword)

= Java Technology

Java

The Java

i The Java Platform
Programming Language

—\ 0]
Emﬁ;ﬂ%.\ MyProgram, java
MyProgram, java MyProgram. class AF' |
My Program Java
EENE Java Virtual Machine platform
public static void main (String[] args) {

System,out.println("Hello World!”);

}
}

HelloWorldApp.java

Hardware-Based Platform

e

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

MyProgram. java

___~

Java Virtual Machine

Hardwarae-Based Platform

j

Java
platform

* A platform is the hardware or software environment in which a

program rumns.
— E.g. Windows, Linux, Solaris OS, and Mac OS

* Java is a software-only platform that runs on top of other

hardware-based platforms. It consists of

— The Java Virtual Machine: a software-based processor that

presents its own instruction set

— The Java Application Programming Interface (API)

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

* Java Platform, Standard Edition (Java SE):

— stand-alone programs that run on desktops.

— applets (programs that run in the context of a web browser)
* Java Platform, Enterprise Edition (Java EE):

— built on top of Java SE.

— enterprise-oriented applications and servlets (server
programs that conform to Java EE’ s Servlet API).

 Java Platform, Micro Edition (Java ME):
— MIDlets (programs that run on mobile information devices)

— Xlets (which are programs that run on embedded devices)

Table 2-1 Java Jargon

Java Jargon

Name Acronym Explanation

Java Development Kit DK The software for programmers who want
to write Java programs

Java Runtime Environment IRE The software for consumers who want to
run Java programs

Standard Edition SE The Java platform for use on desktops and
simple server applications

Enterprise Edition EE The Java platform for complex server
applications

Micro Edition ME The Java platform for use on cell phones
and other small devices

Jlava 2 | 4 An outdated term that described Java
versions from 1998 until 2006

Software Development Kit SDK An outdated term that described the JDK
from 1998 until 2006

Update u Sun’s term for a bug fix release

MetBeans — Sun’s integrated development envinonment

¥) overview (Java 2 Platform SE 5.0) - Mozila Firefox
Fie Edit View History Bookmarks Tools Help

‘EOverview (Java 2 Platform SE 5.0) |T‘

_ & | [E] hittp://download.oracle.com/javase/1,5.0/docs/api/ . (,’] [-'l- Google J'] LIEAN
(2] Most Visited @ Getting Started = Latest Headines I MySQL :: MySQL Docu...

Java™ 2 Platform — Package Class Use Tree Deprecated Index Help Java™ 2 Platform
Standard Ed. 5.0 PREV NEXT FRAMES 1O FRAMES Standard Ed. 5.0

All Classes i
Packages Java™ 2 Platform Standard Edition 5.0

122 2pDet API Specification

ava awt -
4'i”° zut color LlJ This document is the APl specification for the Java 2 Platform Standard Edition 5.0.

All Classes ﬂ See: o

AbstractAction Description

AbstractBorder

AbstractButton

AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel
AbstractDocument
AbstractDocument Attribute Cor,

Java 2 Platform Packages

java.applet

Provides the classes necessary to create an applet and the classes an applet uses to
communicate with ifs applef context.

java.awt

AbstractDocument. Content
AbstractDocument ElementEdit

Contains all of the classes for creating user interfaces and for painting graphics and

images.

java.awt.color

AbstractExecutorSenice
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDim

Provides classes for color spaces.

java.awt.datatransfer

AbstractList

AbsfractListModel

Abstracthap

AbstractMethodError
AbstractPreferences
AbstractQueue v

Drag
java.awt.dnd syste

logic
. Provi
java.awt.event

comy
java.awt.font Provi

Eal

* The Java API is a large collection of

ready-made software components that
provide many useful capabilities.

It is grouped into libraries of related classes
and interfaces; these libraries are known
as packages

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java Software Development Process

i)
i

o

MyProgram. java MyProgram. class

0100101, .. -
% F

e w

My FProgram

 Write the source code and save in files with .java extension

» Compile the source code into .class files using the

* A .class file contains bytecodes

(the machine language of the Java Virtual Machine (Java VM)
* Run the application (with an instance of the Java VM)

using

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html

* The java tool loads and starts the VM, and passes the

program’ s main classfile (.class) to the machine
« The VM uses classloader to load the classfile

« The VM’ s bytecode verifier checks that the classfile’ s
bytecode is valid and does not compromise security

— If the bytecode has any problem, the verifier terminates the VM

« Ifall is well with the bytecode, the VM ’s interpreter

interprets the bytecode one instruction at a time

* Interpretation consists of identifying bytecode instructions, and executing
equivalent native instructions (instructions understood by the physical processor)

class HelloWorldApp {
public static void main(String[] args) {
System,.out.println("Helle World!”):;
}

) $ javac HelloWorldApp.java

HelloWorldhpp. java
@ Compiler

$ java HelloWorldApp

(1)Load the JVM

(2)classloader loads HelloWorldApp.class
(3)bytecode verifier check that the classfile

is valid and secure

(4)If all is well, the interpreter interpret the
bytecode

(5)A section of frequently executed bytecode
will be compiled to native code by the JIT (Just
In Time) compiler

* The Java platform provides an abstraction over the underlying
hardware/OS platform

— Portability: the same .class files can run unchanged on a variety of
hardware platforms and operating systems

Development Tools: javac, java, javadoc
Rich APIs

Deployment Technologies: Web Start, Java
Plug-In

User Interface Toolkits

Integration libraries: JDBC, JNDI, RMI

Java Basics

- (simple) Program Structure
- Comments

A Simple Java Program

/**

* File: FirstSample.java
* This is our first sample program in Java

* @version 1 o
* @author Kulwadee class keyword : everything in java

% program must be inside a class!

class name: starts with a letter,
p\lblic class FirstSample— followed by any number of letters or digits
{

public static void main(String[] args)

A
N
N

System.out.printin(“\Welcome to Java!”);
}

} \
\/ The main method:
the method that every java

Access modifier
program MUST have!

A Simple Java Program :
output a line of message to console

System.out.printin(“Welcome to Java! %;

Object.method(parameters)

Now.. Let’ s compile and run our first program!

C:\> javac FirstSample.java

C:\> dir FirstSample.*
FirstSample.java FirstSample.class
C:\> java FirstSample

Welcome to Javal

Java Basics

- (simple) Program Structure
- Comments
- Primitive Data Types

Primitive Data Types (1/3)

Type Description Size

int The 1nteger type, with range bytes
-2,147,483, 648 2,147,483, 0647

byte |The type describing a single byte, with byte
range -128 . . . 127

short |[The short integer type, with range bytes
-32768 . . . 32767

long |[The long integer type, with range bytes

-9,223,372,036,854,775,808
9,223,372,036,854,775,807

Primitive Data Types (2/3)

Type Description Size

double [The double-precision floating-point type, |8
with a range of about +10°"° and about 15 bytes

significant decimal digits

float |The single-precision floating-point type, 4
with a range of about +10°" and about 7 bytes
significant decimal digits

Primitive Data Types (3/3)

Type Description Size

char The character type, representing code 2 bytes
units 1n the Unicode encoding scheme

boolean |The type with the two truth 1 bit
values false and true

Java is a statically, strongly typed language

- Statically typed :
every variable must be declared with a data type.
(vs. dynamically typed)

- Strongly typed :

JVM keeps track of all variable types. Once a variable is declared,
its data type cannot be changed.

(vs. weakly typed)

What about these languages?
C++

C
Python

Java Basics

- (simple) Program Structure
- Comments

- Primitive Data Types

- Declaring Variables

Types and Variables
Syntax 2.1: Variable Definition

typeName variableName = value;

or

typeName variableName;

Example:

String greeting = "Hello, AOOP!";

double salary = 65000.0;
Purpose:
To define a new variable of a particular type and optionally supply an initial value

Identifiers

* Identifier: name of a variable, method, or class
« Rules for identifiers in Java:

— Can be made up of letters, digits, and the underscore
(_) character

— Cannot start with a digit

— Cannot use other symbols such as ? or %
— Spaces are not permitted inside identifiers
— You cannot use reserved words

— They are case sensitive

e Convention:

— variable names start with a lowercase letter

— class names start with an uppercase letter

Number Types

* Int: Integers, no fractional part
1,-4,0
» double: floating-point numbers (double precision)
0.5, -3.11111, 4.3E24, 1E-14
* A numeric computation overflows if the result falls
outside the range for the number type
Int n = 1000000;
System.out.printin(n * n); // prints -727379968

Number Types: Floating-point

* Rounding errors occur when an exact conversion between

numbers is not possible
double f = 4.35;

System.out.printin(100 * f); // prints 434.99999999999994

« Java: lllegal to assign a floating-point expression to an

Integer variable
double balance = 13.75;

int dollars = balance; // Error

» Casts: used to convert a value to a different type
int dollars = (int) balance; // OK

« Cast discards fractional part.
« Math.round converts a floating-point number to nearest integer

long rounded = Math.round(balance);
/I if balance is 13.75, then rounded is set to 14

Cast

Cast: used to convert a value to a different type
- discard fractional part

Syntax 2.2: Cast

(typeName) expression

Example:
(int) (balance * 100)

Purpose:
To convert an expression to a different type

Constants: final

* A final variable is a constant

* Once its value has been set, it cannot be changed

 Named constants make programs easier to read and maintain
« Convention: use all-uppercase names for constants

final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;

final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;

payment = dollars + quarters * QUARTER_ VALUE +
dimes * DIME_VALUE +
nickels * NICKEL_VALUE +
pennies * PENNY_VALUE;

Constants: static final

* If constant values are needed in several methods,
declare them together with the instance fields of a class
and tag them as static and final

 Give static final constants public access to enable other
classes to use them

public class Math
{

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

}

double circumference = Math.PI * diameter;

Constant Definition

Syntax 2.3: Constants

In a method:
final typeName variableName = expression ;

In a class:
accessSpecifier static final typeName variableName = expression;

Example:

final double NICKEL_VALUE = 0.05;
public static final double LITERS PER_GALLON = 3.785;

Purpose:
To define a constant in a method or a class

Java Basics

- (simple) Program Structure
- Comments

- Primitive Data Types

- Declaring Variables

- Operators

Operators

Assignment (=), Increment (++), Decrement (--)
Arithmetic Operators

+ - */ %
Relational Operators
< <= > >= == I=

Logical Operators
I && || A

Assignment, Increment, Decrement

« Assignment is not the same as mathematical equality:
items = items + 1;
* Increment
items++ IS the same as items = items + 1
 Decrement
items-- subtracts 1 from items

fems = e |
\ \

. items + 1

A

R

Figure 1
Incrementing a Variable

Arithmetic Operations

* /Is the division operator
If both arguments are integers, the result is an integer.
The remainder is discarded
7.0/ 4 vyields 1.75
714 vyields 1

» Get the remainder with % (pronounced "modulo")

/% 41s 3

The Math class

« Math class: contains methods like sqrt and pow

« To compute x", you write Math.pow(Xx, n)

* To take the square root of a number, use the Math.sqrt;
for example, Math.sqrt(x)

* |n Java,

—b + -Jg,f — 4ac

2a

can be represented as
(-b + Math.sqrt(b *b-4*a*c))/(2* a)

The Math class

(-b + Math.sgqrt(b = b — 4 = a = <)) / (2 = a)

—— - v + ——"
b2 dac 2a
L " o
'L b2 _ dac)
'H,II|IrEJ' — "'11:'1-!:_
L P A
b+ 1.,'1".5.: 2_dac

Figure 2 Analyzing an Expression

Mathematical Methods in Java

Math.sqrt(x) square root
Math.pow(x, y) power xY
Math.exp(x) ex
Math.log(x) natural log

Math.sin(x), Math.cos(x), Math.tan(x)

sine, cosine, tangent (x in radian)

Math.round(x)

closest integer to x

Math.min(x, y), Math.max(x, y)

minimum, maximum

Table 3-4 Operator Precedence

Operators

Associativity

[1 . () {method call)

Left to right

I~ 4 — +{unary) - (unary) () (cast) new

Right to left

/%

Left to right

Left to right

< B 3

Left to right

< <= » »= 1nstanceof

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

[|

Right to left

= L= -= &= _.'I= ;-{: 5: = M= fff= k= Bhi=

Right to left

Java Basics

- (simple) Program Structure
- Comments

- Primitive Data Types

- Declaring Variables

- Operators

- String

String

A string is a sequence of characters
Strings are objects of the String class

String constants:
"Hello, World!"

String variables:
String message = "Hello, World!";

String length:
int n = message.length();
Empty string: ™"
H = 1 1 L] » W O r 1 d
o 1 2 3 4 5 & 7 8 9 10 11

Figure 3 String Positions

12

String Operations (1)

e (Concatenation

— Use the + operator:String name = "Dave";
String message = "Hello, " 4+ name;

// message is "Hello, Dave"

— If one of the arguments of the + operator is a string, the
other is converted to a stringString a = "Agent";
int n = 7;

String bond = a + n; // bond is Agent’

String Operations (2)
* Substring

String greeting = "Hello, World!";
String sub = greeting.substring(o, 5);
// sub is "Hello"

— Supply start and “past the end” position

5
s - ~
H e 1 1T o |, W o r 1 d !
o> 1 2 3 4 5 47 8 9 10 11712

Figure 4 Extracting a Substring

String Operations (3)

» Testing Strings for Equality
- use the equals method
s.equals(t)
- Do not use == to test if two strings are equal!!

it only determines if the strings are stored in the
same location or not.

String greeting = “hello”;

if (greeting.equals(“hello”)) String greeting = “hello”;

{ if (greeting == “hello”))
System.out.printin(“they are equal!”): {

} /[probably true

else }

{

System.out.printin(“they aren’ t equal!”);

}

Java Basics

- (simple) Program Structure
- Comments

- Primitive Data Types

- Declaring Variables

- Operators

- String

- Basic 10 (console)

Writing Output
» for simple stand-alone java program,

System.out.println(data)

System.out (standard output) :
a static PrintStream object declared in class System
(Java.lang.System)

println method
Print an object (i.e. data) to the standard output stream

Reading Input

« System.in has minimal set of features—it can only read
one byte at a time

 In Java 5.0, Scanner class was added to read keyboard
Input in a convenient manner

import java.util.Scanner;
Scanner in = new Scanner (System.in) ;
System.out.print ("Enter quantity: "),

int guantity = in.nextInt () ;

Note:

nextDouble reads a double

nextLine reads a line (until user hits Enter)
nextWord reads a word (until any white space)

Java Basics

- (simple) Program Structure
- Comments

- Primitive Data Types

- Declaring Variables

- Operators

- String

- Basic 10 (console)

- Control Structures

Control Structures

 Java supports both conditional statements and loops to
determine the control flow of a program

False
amount < ‘
balance?) False
1 = N7
TI' [=4
True
Add interest
o balance
balance =

balance - amount

A

Figure 1
Flowchart for an if Statement Figure 4 Flowchart of a for Loop

Decisions

o If statement

amount < False

balance?

TI'I.]E

balance =
halance - amount

Decisions

e If/else statement

True amount < False

balance?

halance = halance = balance -
balance - amount OVERDRAFT _PENALTY

if statement

Syntax 2.4. if statement

If (condition) iIf (condition)
{ {
statement statementl
} }
else
{
statement?2
}
Example:

If (amount <= balance) balance = balance - amount;

If (amount <= balance)
balance = balance - amount;
else
balance = balance - OVERDRAFT _PENALTY;

Purpose:
To execute a statement when a condition is true or false

Exercise: implement this loop in Java

True Single? False
income True 15% income True 15%
< 21,450 bracket < 35,800 bracket
False False
income True 28% income True 28%
< 51,900 bracket < 86,500 bracket
False False
319% 31%
bracket bracket

Figure 5 Income Tax Computation Using 1992 Schedule

while loop

« Executes a block of code repeatedly
A condition controls how often the loop Is executed

while (condition)
statement;

- Most commonly, the statement is a block statement (set of
statements delimited by { })

while loop

Calculating the Growth of an Investment
Invest $10,000, 5% interest, compounded

annually

Year |Balance
o) $10,000

1 $10,500

2 $11,025

3 $11,576.25
4 $12,155.06
5 $12,762.82

When has the bank account
reached a target balance of
$500,000 ?

while loop

Calculating the Growth of an Investment
Invest $10,000, 5% interest, compounded
annually

balance <
targetBalance
When has the bank account ?
reached a target balance of Trae
$500,000 ?
Increment
years

Add interest
to balance

False

while statement

Syntax 2.5: while statement

while (condition)
statement

Example:

while (balance < targetBalance)

{
year++;
double interest = balance * rate / 100;
balance = balance + interest;
}
Purpose:

To repeatedly execute a statement as long as a condition is true

for loop

for (initialization; condition; update)
statement
Example:
for (inti=1;1<=n; I++)
{
double interest = balance * rate / 100;
balance = balance + interest;
}
equivalent to
Initialization:
while (condition) { statement; update; }
Examples:
for (years = n; years > 0; years--) . . .
for(x=-10; x<=10;x=x+0.5). ..

1 =1
1 € n?
True

Addinterest
o balance

T4+

False

for loop

for statement

Syntax 2.6: for statement

for (initialization; condition; update)

statement
Example:
for (int 1 = 1; 1 <= n; 1i++)
{
double interest = balance * rate / 100;
balance = balance + interest;
}
Purpose:

To execute an initialization, then keep executing a statement and
updating an expression while a condition is true

Summary

« fundamentals of Java language
* program structure, comment
* primitive data types
* variables
e control flows

« Java API’ s classes: Math , String
« Console I/O

- Input (Scanner class)

- Output (System.out class)

Additional Readings

* The Java Tutorials : Getting Started,
http://docs.oracle.com/javase/tutorial/getStarted/TOC.html
* The Java Language Environment,

http://www.oracle.com/technetwork/java/langenv-140151 .html

http://docs.oracle.com/javase/tutorial/getStarted/TOC.html
http://docs.oracle.com/javase/tutorial/getStarted/TOC.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html

