Advanced Object-Oriented
Programming

Introduction to OOP and Java

Dr. Kulwadee Somboonviwat
International College, KMITL
kskulwad@kmitl.ac.th



mailto:kskulwad@kmitl.ac.th

Course Objectives

 Solidify object-oriented programming skills
 Study the Java Technology

— The Java Programming Language

— The Java Platform, Enterprise Edition (Java EE 7)



Key Topics covered in this course

Fundamentals of Java Programming
Object-oriented programming concepts
GUI Programming

Concurrency

Java EE 7



Object-Oriented Programming

* Dominant programming paradigm these days
» A program is made of objects.
* Each object

— exposes specific functionality to the users

— encapsulates (hides) the implementation of its

functionality



Traditional Procedural Programming

* 1970s: structured’, procedural programming

— Programs = Algorithms + Data (Niklaus Wirth, 1975)

» First, we think about a set of procedures (algorithms)

needed to solve our problem.

* Then, we find appropriate ways to store the data
— Used in C, Pascal, Basic, etc.

— Structured programming works well for small to

medium sized problems



In procedural programming,
- problem is decomposed into procedures
- all procedures manipulate a set of global data

procedure
procedure

procedure

procedure
procedure

procedure

Global Data

Suppose that ...
- your program has 2,000 procedures
- a piece of data is in an incorrect state

How are you going to find bugs
in this situation?

How many procedures you need to
search for the culprit?



In object-oriented programming style,
- your program consists of objects
- each object has a specific set of attributes and methods

method

method

method

method

method

method

Object data

Object data

Object data

Suppose that ...
- your program has 200 objects,
and each object has 10 methods.
- a piece of data of an object
1S In an incorrect state

How are you going to find bugs
in this situation?

How many procedures you need to
search for the culprit?



= Java Technology

Java

The Java

i The Java Platform
Programming Language

—\ 0 ]
Emﬁ;ﬂ%.\ MyProgram, java
MyProgram, java MyProgram. class AF' |
My Program Java
EENE Java Virtual Machine platform
public static void main (String[] args) {

System,out.println("Hello World!”);

}
}

HelloWorldApp.java

Hardware-Based Platform

e

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html



Simple * Architecture neutral

Object oriented * Portable
Distributed * High Performance
Multithreaded * Robust

Dynamic * Secure



Features JEAC! C++
Data types Supports both primitive | Supports both primitive
scalar types and classes scalar types and classes
Object allocation Allocated from heap, Allocated from heap or
accessed through stack, accessed through
reference variables reference variables or
(no pointers) pointers
Object de-allocation Implicit Explicit

(garbage collection)

(delete operator)

Inheritance Single inheritance only Single, Multiple
(multiple inheritance is inheritance
possible with interfaces)
Binding All binding of messages Dynamic binding of

to methods are dynamic
except in the case of
methods that cannot be
overridden

messages to methods are
optional (using the
virtual keyword)




= Java Technology

Java

The Java

i The Java Platform
Programming Language

—\ 0 ]
Emﬁ;ﬂ%.\ MyProgram, java
MyProgram, java MyProgram. class AF' |
My Program Java
EENE Java Virtual Machine platform
public static void main (String[] args) {

System,out.println("Hello World!”);

}
}

HelloWorldApp.java

Hardware-Based Platform

e

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html



MyProgram. java

___~

Java Virtual Machine

Hardwarae-Based Platform

j

Java
platform

* A platform is the hardware or software environment in which a

program rumns.
— E.g. Windows, Linux, Solaris OS, and Mac OS

* Java is a software-only platform that runs on top of other

hardware-based platforms. It consists of

— The Java Virtual Machine: a software-based processor that

presents its own instruction set

— The Java Application Programming Interface (API)

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html



* Java Platform, Standard Edition (Java SE):

— stand-alone programs that run on desktops.

— applets (programs that run in the context of a web browser)
* Java Platform, Enterprise Edition (Java EE):

— built on top of Java SE.

— enterprise-oriented applications and servlets (server
programs that conform to Java EE’ s Servlet API).

 Java Platform, Micro Edition (Java ME):
— MIDlets (programs that run on mobile information devices)

— Xlets (which are programs that run on embedded devices)



Table 2-1 Java Jargon

Java Jargon

Name Acronym Explanation

Java Development Kit DK The software for programmers who want
to write Java programs

Java Runtime Environment IRE The software for consumers who want to
run Java programs

Standard Edition SE The Java platform for use on desktops and
simple server applications

Enterprise Edition EE The Java platform for complex server
applications

Micro Edition ME The Java platform for use on cell phones
and other small devices

Jlava 2 | 4 An outdated term that described Java
versions from 1998 until 2006

Software Development Kit SDK An outdated term that described the JDK
from 1998 until 2006

Update u Sun’s term for a bug fix release

MetBeans — Sun’s integrated development envinonment




¥) overview (Java 2 Platform SE 5.0) - Mozila Firefox
Fie Edit View History Bookmarks Tools Help

‘EOverview (Java 2 Platform SE 5.0) |T‘

_ & | [E] hittp://download.oracle.com/javase/1,5.0/docs/api/ . (,’] [-'l- Google J'] LIEAN
(2] Most Visited @ Getting Started = Latest Headines I MySQL :: MySQL Docu...

Java™ 2 Platform — Package Class Use Tree Deprecated Index Help Java™ 2 Platform
Standard Ed. 5.0 PREV NEXT FRAMES 1O FRAMES Standard Ed. 5.0

All Classes i
Packages Java™ 2 Platform Standard Edition 5.0

122 2pDet API Specification

ava awt -
4'i”° zut color LlJ This document is the APl specification for the Java 2 Platform Standard Edition 5.0.

All Classes ﬂ See: o

AbstractAction Description

AbstractBorder

AbstractButton

AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel
AbstractDocument
AbstractDocument Attribute Cor,

Java 2 Platform Packages

java.applet

Provides the classes necessary to create an applet and the classes an applet uses to
communicate with ifs applef context.

java.awt

AbstractDocument. Content
AbstractDocument ElementEdit

Contains all of the classes for creating user interfaces and for painting graphics and

images.

java.awt.color

AbstractExecutorSenice
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDim

Provides classes for color spaces.

java.awt.datatransfer

AbstractList

AbsfractListModel

Abstracthap

AbstractMethodError
AbstractPreferences
AbstractQueue v

Drag
java.awt.dnd syste

logic
. Provi
java.awt.event

comy
java.awt.font Provi

Eal

* The Java API is a large collection of

ready-made software components that
provide many useful capabilities.

It is grouped into libraries of related classes
and interfaces; these libraries are known
as packages

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html



Java Software Development Process

i)
i

o

MyProgram. java MyProgram. class

0100101, .. -
% F

e w

My FProgram

 Write the source code and save in files with .java extension

» Compile the source code into .class files using the

* A .class file contains bytecodes

(the machine language of the Java Virtual Machine (Java VM)
* Run the application (with an instance of the Java VM)

using

Source: http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html



* The java tool loads and starts the VM, and passes the

program’ s main classfile (.class) to the machine
« The VM uses classloader to load the classfile

« The VM’ s bytecode verifier checks that the classfile’ s
bytecode is valid and does not compromise security

— If the bytecode has any problem, the verifier terminates the VM

« Ifall is well with the bytecode, the VM ’s interpreter

interprets the bytecode one instruction at a time

* Interpretation consists of identifying bytecode instructions, and executing
equivalent native instructions (instructions understood by the physical processor )



class HelloWorldApp {
public static void main(String[] args) {
System,.out.println("Helle World!”):;
}

) $ javac HelloWorldApp.java

HelloWorldhpp. java
@ Compiler

$ java HelloWorldApp

(1)Load the JVM

(2)classloader loads HelloWorldApp.class
(3)bytecode verifier check that the classfile

is valid and secure

(4)If all is well, the interpreter interpret the
bytecode

(5)A section of frequently executed bytecode
will be compiled to native code by the JIT (Just
In Time) compiler

* The Java platform provides an abstraction over the underlying
hardware/OS platform

— Portability: the same .class files can run unchanged on a variety of
hardware platforms and operating systems




Development Tools: javac, java, javadoc
Rich APIs

Deployment Technologies: Web Start, Java
Plug-In

User Interface Toolkits

Integration libraries: JDBC, JNDI, RMI



