
Advanced Object-Oriented

Programming

Kulwadee Somboonviwat
International College, KMITL

kskulwad@kmitl.ac.th

Objects, Classes, and Packages

mailto:kskulwad@kmitl.ac.th

The Bomber Problem
• Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6

50 20

90 60

10 72

74 98

5 136

150 91

• Write a program to draw the cities on a DrawingPanel, then drop a
"bomb" that turns all cities red that are within a given radius:

Blast site x? 100

Blast site y? 100

Blast radius? 75

Kaboom!

A Bad Solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

 xCoords[i] = input.nextInt(); // read each city

 yCoords[i] = input.nextInt();

}

...

– parallel arrays: 2+ arrays with related data at same indexes.

• Considered poor style.

Analyzing our first solution

• The data in this problem is a set of points.

• It would be better stored as Point objects.

– A Point would store a city's x/y data.

– We could compare distances between Points
to see whether the bomb hit a given city.

– Each Point would know how to draw itself.

– The overall program would be shorter and cleaner.

Objects

• OOP = Programming using OBJECTS

• An object represents an entity in the real world that can

be distinctly identified, e.g. a student, a bank account

• 3 keys characteristics of objects

State – defined by data fields

e.g. a circle object has a radius field to represent its state

Behavior – defined by methods

e.g. circle.getArea()

Identity – each object are distinct even they may have the

same state and behavior

Class

• A class is a blueprint (or a template) that defines

what an object’s data fields and methods will be.

• A class provides abstraction of real-world objects

• An object is an instance of a class

• Creating an object or an instance is called

instantiation

Class Abstraction and Encapsulation

• Class

– An abstraction that separates its implementation

from its usage

– An encapsulation that hides the details of

implementation from the user

Class

Class implementation

is like a black box

hidden from the

clients

Class contract
(signatures of public
methods and public

constants

Clients use the class
through the contract

of the class

The Blueprint Analogy
iPod blueprint

state:
 current song
 volume
 battery life

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #1

state:
 song = "1,000,000 Miles"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #2

state:
 song = "Letting You"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #3

state:
 song = "Discipline"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

creates

Abstraction
• abstraction: A distancing between ideas and details.

– We can use objects without knowing how they work.

• abstraction in an iPod:

– You understand its external behavior (buttons, screen).

– You don't understand its inner details, and you don't need to.

Defining the class Point

• Let us implement a Point class as a way of learning
about defining classes.

– We will define a type of objects named Point.

– Each Point object will contain x/y data called
fields.

– Each Point object will contain behavior called
methods.

– Client programs will use the Point objects.

Desired Point objects

 Point p1 = new Point(5, -2);

 Point p2 = new Point(); // origin, (0, 0)

• Data in each Point object:

• Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

The Point class blueprint

– The class (blueprint) will describe how to create objects.
– Each object will contain its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Defining a Class in Java

class ClassName{

 /* data fields */

 /* constructors */

 /* methods */

}

Constructing Objects with the new operator

Syntax:

ClassName objectRefVar = new ClassName();

Rectangle rect1 = new Rectangle();

Rectangle rect2 = new Rectangle(2.0, 3.0);

Rectangle rect3 = new Rectangle(8.0, 5.0);

// rect1, rect2, rect3 are references to objects

// created by the new operator.

rect1: Rectangle

width = 1.0
height = 1.0

rect2: Rectangle

width = 2.0
height = 3.0

rect3: Rectangle

width = 8.0
height = 5.0

rect1 rect2 rect3

Sending Messages to Objects with the dot operator

Syntax: // dot operators

 objectRefVar.dataField

 objectRefVar.methodName(arguments)

Rectangle rect1 = new Rectangle();

Rectangle rect2 = new Rectangle(2.0, 3.0);

Rectangle rect3 = new Rectangle(8.0, 5.0);

System.out.println(“Rect2 width is “ + rect2.width);

System.out.println(“Rect2 height is “ + rect2.height);

System.out.println(“Rect2 area is “ + rect2.getArea());

public class Point {

 int x;

 int y;

// Changes the location of this Point object.
public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
}

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
 }
 public double distance(Point other) {
 int dx = x - other.x;
 int dy = y - other.y;
 return Math.sqrt(dx * dx + dy * dy);
 }

}

The Point Class and its clients

The Point Class and its clients

PointMain.java (client program)

public class PointMain {

 main(String args) {

 Point p1 = new Point();

 p1.x = 7;

 p1.y = 2;

 Point p2 = new Point();

 p2.x = 4;

 p2.y = 3;

 ...

 }

}

Point.java (class of objects)

public class Point {

 int x;

 int y;

 …. …..

}

Encapsulation

• encapsulation: Hiding implementation details from clients.

– Encapsulation forces abstraction.

• separates external view (behavior) from internal view

(state)

• protects the integrity of an object's data

Private Fields / Methods

A field that cannot be accessed from outside the class

 private type name;

– Examples:

 private int id;

 private String name;

• Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point

System.out.println(p1.x);

 ^

Accessing Private fields with
getter/setter methods

 // A "read-only" access to the x field ("accessor")

 public int getX() {

 return x;

 }

 // Allows clients to change the x field ("mutator")

 public void setX(int newX) {

 x = newX;

 }

– Client code will look more like this:

 System.out.println(p1.getX());

 p1.setX(14);

The new better version of Point class

// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
 }
}

Benefits of Encapsulation

• Abstraction between object and clients

• Protects object from unwanted access

– Example: Can't fraudulently increase an Account's balance.

• Can change the class implementation later

– Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

• Can constrain objects' state (invariants)

– Example: Only allow Accounts with non-negative balance.

– Example: Only allow Dates with a month from 1-12.

Data and method visibility

• Besides the private keyword, java also
provides three other types of keywords for
controlling data and method visibility:

– public, protected, default(package)

Data and Methods Visibility (1/2)

Modifier on
members in a
class

Accessed
from the
same class

Accessed from
the same
package

Accessed
from a
subclass

Accessed from
a different
package

public ○ ○ ○ ○

protected ○ ○ ○ ×

(default) * ○ ○ × ×

private ○ × × ×

* default access has no modifier associated with it

Data and Methods Visibility (2/2)

public class C1 {
 public int x;
 protected int y;
 int z;
 private int u;
 protected void m() {
 }
}

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;
 can access o.z;
 cannot access u;
 can invoke o.m();
}

public class C3
 extends C1 {
 can access o.x;
 can access o.y;
 can access o.z;
 cannot access u;
 can invoke o.m();
}

public class C5 {
 C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;
 cannot access u;
 cannot invoke o.m();
}

public class C4
 extends C1 {
 can access o.x;
 can access o.y;
 cannot access o.z;
 cannot access u;
 can invoke o.m();
}

package p1;

package p2;

Valid Application of Visibility Modifiers

Modifier Class Constructor Method Data block

(default)* ○ ○ ○ ○ ○

public ○ ○ ○ ○ x

protected x ○ ○ ○ x

private x ○ ○ ○ x

* default access has no modifier associated with it

this keyword

• this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)

– Refer to a field: this.field

– Call a method: this.method(parameters);

– One constructor this(parameters);
can call another:

Variable shadowing
• shadowing: 2 variables with same name in same scope.

– Normally illegal, except when one variable is a field.

 public class Point {

 private int x;

 private int y;

 ...

 // this is legal

 public void setLocation(int x, int y) {

 ...

 }

– In most of the class, x and y refer to the fields.

– In setLocation, x and y refer to the method's parameters.

Fixing the Variable shadowing

 public class Point {

 private int x;

 private int y;

 ...

 public void setLocation(int x, int y) {

 this.x = x;

 this.y = y;

 }

 }

• Inside setLocation,

– To refer to the data field x, say this.x

– To refer to the parameter x, say x

Calling another constructor
 public class Point {

 private int x;

 private int y;

 public Point() {

 this(0, 0); // calls (x, y) constructor

 }

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 ...

 }

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another
constructor

UML Class Diagram

Rectangle

width: double
height: double

Rectangle()
Rectangle(W: double, H: double)
getArea(): double

Class name

Data fields

Constructors and

methods

rect1: Rectangle

width = 1.0
height = 1.0

rect2: Rectangle

width = 2.0
height = 3.0

rect3: Rectangle

width = 8.0
height = 5.0

UML notation for

objects

Instance vs. Class Fields (or Methods)

• An instance field or method belongs to an instance of a class.

• A static field or method is shared by all instances of the

 same class, and can be invoked without using an instance

Rectangle

width: double
height: double
numberOfObjects: int

Rectangle()
Rectangle(W: double, H: double)
getArea(): double

rect1: Rectangle

width = 1.0
height = 1.0
numberOfObjects= 2

rect2: Rectangle

width = 2.0
height = 3.0
numberOfObject = 2

1.0

1.0

width

height

2.0

3.0

width

height

2 numberOfObjects

Memory

instantiate

Example: class Rectangle

class Rectangle {

 /* data fields */

 double width = 1.0;

 double height = 1.0;

 /* constructors */

 Rectangle() { }

 Rectangle(double W, double H) {

 width = W; height = H;

 }

 /* methods */

 double getArea() {

 return width*height;

 }

}

Adding a static field and method to our class

class Rectangle {

 /* data fields */

 double width = 1.0;

 double height = 1.0;

 static int numberOfObjects;

 /* constructors */

 Rectangle() { }

 Rectangle(double W, double H) {

 width = W; height = H;

 }

 /* methods */

 double getArea() { return width*height; }

 static int getNumberOfObjects() {

 return numberOfObjects;

 }

}

Using static fields and methods

public static void main(String[] args)

{

 Rectangle rect1 = new Rectangle();

 Rectangle rect2 = new Rectangle(2.0,3.0);

 System.out.println(“There are “ +
 Rectangle.numberOfObjects +

 “ rectangles.”);

 // or we can call the static method

 System.out.println(“There are “ +
 Rectangle.getNumberOfObjects() +

 “ rectangles.”);

}

syntax: ClassName.staticDataField

 ClassName.staticMethodName()

Summary: objects and classes

• A class is a template for objects.

– declared by a class keyword and a class name

– class declaration is populated with a combination of field,

method, and constructor declarations

• An object is an instance of a class.

– Use the new operator to create an object

– Use the dot operator to access fields and methods

• A field is a variable that stores a value of an object’s attribute

• A method is a named block of code with an optional list of

arguments and a return value.

• instance fields/methods : associated with individual objects

• static fields/methods : shared by all objects of the same class

Packages

• Packages are used to organize classes

• All standard Java packages are inside the java and

javax package hierarachies

• Uses packages to guarantee the uniqueness of class

names

• To put a class into a package add

 package packageName;

as the first non-comment and non-blank statement

in the program

Using Public Class from other packages

• add the full package name in front of every class name

 java.util.Date aday = new java.util.Date();

• use the import statement

 import java.util.*;

 Date aday = new Date();

 Or

 import java.util.Date;

 Date aday = new Date();

The java.util package

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html

The java.util.Date class source code
http://javasourcecode.org/html/open-source/jdk/jdk-6u23/java/util/Date.java.html

Java API doc. and Source code

• The best resources for learning the Java language

are the API documentation and its source code.

• You can download them from Oracle’s Java SE site

and store on your computer for offline browsing

• Or, browse the online version at

– http://docs.oracle.com/javase/7/docs/api/

– http://javasourcecode.org/

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://javasourcecode.org/
http://javasourcecode.org/

