
Advanced Object-Oriented

Programming

Kulwadee Somboonviwat
International College, KMITL

kskulwad@kmitl.ac.th

Inheritance, Interfaces
and Polymorphism

mailto:kskulwad@kmitl.ac.th

The software crisis
• software engineering: The practice of developing,

designing, documenting, testing large computer programs.

• Large-scale projects face many issues:

– getting many programmers to work together

– getting code finished on time

– avoiding redundant code

– finding and fixing bugs

– maintaining, improving, and reusing existing code

• code reuse: The practice of writing program code once and

using it in many contexts

I. Inheritance

Inheritance: facility for code reuse

– Syntax

– Overriding

– Inheritance Hierarchy

– Polymorphism

– Interacting with super class

– Inheritance and constructor

– Inheritance and fields

– The Object class

– Abstract class

Case Study: Employee regulations
• Consider the following employee regulations:

– Employees work 40 hours / week.

– Employees make $40,000 per year, except legal secretaries who make $5,000

extra per year ($45,000 total), and marketers who make $10,000 extra per

year ($50,000 total).

– Employees have 2 weeks of paid vacation leave per year, except lawyers who

get an extra week (a total of 3).

– Employees should use a yellow form to apply for leave, except for lawyers

who use a pink form.

• Each type of employee has some unique behavior:

– Lawyers know how to sue.

– Marketers know how to advertise.

– Secretaries know how to take dictation.

– Legal secretaries know how to prepare legal documents.

An Employee class

// A class to represent employees in general (20-page manual).

public class Employee {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

}

– Exercise: Implement class Secretary, based on the
previous employee regulations. (Secretaries can take
dictation.)

Redundant Secretary class
// A redundant class to represent secretaries.

public class Secretary {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

Desire for code-sharing

• takeDictation is the only unique
behavior in Secretary.

• We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {

 copy all the contents from the Employee class;

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

Inheritance

• inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

– a way to group related classes

– a way to share code between two or more classes

• One class can extend another, absorbing its data/behavior.

– superclass: The parent class that is being extended.

– subclass: The child class that extends the superclass and
inherits its behavior.

• Subclass gets a copy of every field and method from
superclass

Inheritance in Java

• Defined with the extends keyword

• Unlike C++, Java does not allow multiple inheritance

– In Java, we use interface to implement multiple inheritance

• Why using inheritance ?

– Model “is-a” relationship

– Code Reuse

Lawyer

Employee

Secretary

superclass

subclass subclass

class Employee {

…

}

class Lawyer extends Employee {

…

}

class Secretary extends Employee {

….

}

 public class name extends superclass {

 ….

 }

– Example:

 public class Secretary extends Employee {

 ...

 }

• By extending Employee, each Secretary object now:

– receives a getHours, getSalary, getVacationDays, and

getVacationForm method automatically

– can be treated as an Employee by client code (see later in

polymorphism)

Inheritance Syntax

Improved Secretary code

// A class to represent secretaries.

public class Secretary extends Employee {

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

• Now we only write the parts unique to each type.

– Secretary inherits getHours, getSalary,
getVacationDays, and getVacationForm methods
from Employee.

– Secretary adds the takeDictation method.

Overriding

Implementing Lawyer

• Consider the following lawyer regulations:

– Lawyers who get an extra week of paid vacation (a total of 3).

– Lawyers use a pink form when applying for vacation leave.

– Lawyers have some unique behavior: they know how to sue.

• Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Consider the Employee class

// A class to represent employees in general (20-page manual).

public class Employee {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

}

Overriding methods
• override: To write a new version of a method in a subclass

that replaces the superclass's version.

– No special syntax required to override a superclass
method.
Just write a new version of it in the subclass.

 public class Lawyer extends Employee {

 // overrides getVacationForm method in Employee
class

 public String getVacationForm() {

 return "pink";

 }

 ...

 }

–Exercise: Complete the Lawyer class.

• (3 weeks vacation, pink vacation form, can sue)

Lawyer class

// A class to represent lawyers.

public class Lawyer extends Employee {

 // overrides getVacationForm from Employee class

 public String getVacationForm() {

 return "pink";

 }

 // overrides getVacationDays from Employee class

 @Override

 public int getVacationDays() {

 return 15; // 3 weeks vacation

 }

 public void sue() {

 System.out.println("I'll see you in court!");

 }

}

– Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Marketer class

// A class to represent marketers.

public class Marketer extends Employee {

 public void advertise() {

 System.out.println("Act now while supplies last!");

 }

 public double getSalary() {

 return 50000.0; // $50,000.00 / year

 }

}

Note: Overloading vs. Overriding

• Overloading means to define multiple methods

with the same name but different signatures

• Overriding means to provide a new implementation

for a method (already defined in the superclass) in

the subclass

Which code uses overriding (a or b) ?

public class Test1
{
 public static void main(String[] args)
 {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}
class B
{
 public void p(double i)
 {
 System.out.println(i * 2);
 }
}
class A extends B
{
 public void p(double i)
 {
 System.out.println(i);
 }
}

public class Test2
{
 public static void main(String[] args)
 {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}
class B
{
 public void p(double i)
 {
 System.out.println(i * 2);
 }
}
class A extends B
{
 public void p(int i)
 {
 System.out.println(i);
 }
}

(b) (a)

Overriding vs Hiding

The distinction between hiding and overriding has important implications. The

version of the overridden method that gets invoked is the one in the subclass.

The version of the hidden method that gets invoked depends on whether it is

invoked from the superclass or the subclass. Let's look at an example that

contains two classes.

public class Animal {

 public static void testClassMethod() {

 System.out.println("The class" + " method in Animal.");

 }

 public void testInstanceMethod() {

 System.out.println("The instance " + " method in Animal.");

 }

}

public class Cat extends Animal {

 public static void testClassMethod() {

 System.out.println("The class method" + " in Cat.");

 }

 public void testInstanceMethod() {

 System.out.println("The instance method" + " in Cat.");

 }

 public static void main(String[] args) {

 Cat myCat = new Cat();

 Animal myAnimal = myCat;

 Animal.testClassMethod();

 myAnimal.testInstanceMethod();

 }

}

The output from this program is as follows:

The class method in Animal.

The instance method in Cat.

Preventing Extending and Overriding

• Use the final modifier to indicate that

– A class cannot be a superclass

 public final class C {

 }

– A method cannot be overriden by its subclasses

public class Test {

 public final void m() { }

}

Inheritance Hierarchy

Levels of inheritance

• Multiple levels of inheritance in a hierarchy are allowed.

– Example: A legal secretary is the same as a regular
secretary but makes more money ($45,000) and can file
legal briefs.

 public class LegalSecretary extends

Secretary {

 ...

 }

– Exercise: Complete the LegalSecretary class.

LegalSecretary class

// A class to represent legal secretaries.

public class LegalSecretary extends Secretary {

 public void fileLegalBriefs() {

 System.out.println("I could file all day!");

 }

 public double getSalary() {

 return 45000.0; // $45,000.00 / year

 }

}

Inheritance Hierarchy

• Inheritance needs not stop at deriving one layer of class

• The collection of all classes extending from a common

superclass is called an inheritance hierarchy

Marketer

Employee

Secretary Lawyer

LegalSecretary

Interacting with the superclass

Changes to common behavior

• Let's return to our previous company/employee example.

• Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.

– The base employee salary is now $50,000.

– Legal secretaries now make $55,000.

– Marketers now make $60,000.

• We must modify our code to reflect this policy change.

Modifying the superclass

// A class to represent employees (20-page manual).

public class Employee {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 50000.0; // $50,000.00 / year

 }

 ...

}

– Are we finished?

• The Employee subclasses are still incorrect.

–They have overridden getSalary to return
other values.

An unsatisfactory solution
public class LegalSecretary extends Secretary {

 public double getSalary() {

 return 55000.0;

 }

 ...

}

public class Marketer extends Employee {

 public double getSalary() {

 return 60000.0;

 }

 ...

}

– Problem: The subclasses' salaries are based on the
Employee salary, but the getSalary code does not
reflect this.

Calling overridden methods
• Subclasses can call overridden methods with super

 super.method(parameters)

–Example:

 public class LegalSecretary extends Secretary {

 public double getSalary() {

 double baseSalary = super.getSalary();

 return baseSalary + 5000.0;

 }

 ...

 }

– Exercise: Modify Lawyer and Marketer to use super.

Improved subclasses
public class Lawyer extends Employee {

 public String getVacationForm() {

 return "pink";

 }

 public int getVacationDays() {

 return super.getVacationDays() + 5;

 }

 public void sue() {

 System.out.println("I'll see you in court!");

 }

}

public class Marketer extends Employee {

 public void advertise() {

 System.out.println("Act now while supplies

last!");

 }

 public double getSalary() {

 return super.getSalary() + 10000.0;

 }

}

Summary: The super keyword

• Constructors of a superclass are not inherited into the

subclass, but can be invoked only from the constructors of

the subclasses using the keyword super

• The keyword “super” refers to the superclass of the class

in which it appears

– Used to call a superclass constructor : super()

– Used to call a superclass method :

super.methodName(parameters)

Inheritance and Constructor

Inheritance and constructors
• Imagine that we want to give employees more vacation days the

longer they've been with the company.

– For each year worked, we'll award 2 additional vacation days.

– When an Employee object is constructed, we'll pass in the number
of years the person has been with the company.

– This will require us to modify our Employee class and add some
new state and behavior.

– Exercise: Make necessary modifications to the Employee class.

Modified Employee class
public class Employee {

 private int years;

 public Employee(int initialYears) {

 years = initialYears;

 }

 public int getHours() {

 return 40;

 }

 public double getSalary() {

 return 50000.0;

 }

 public int getVacationDays() {

 return 10 + 2 * years;

 }

 public String getVacationForm() {

 return "yellow";

 }

}

Problem with constructors

• Now that we've added the constructor to the Employee class,
our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol

symbol : constructor Employee()

location: class Employee

public class Lawyer extends Employee {

 ^

– The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

– The long explanation: (next slide)

The detailed explanation

• Constructors are not inherited.

– Subclasses don't inherit the Employee(int) constructor.

– Subclasses receive a default constructor that contains:

public Lawyer() {

 super(); // calls Employee() constructor

}

• But our Employee(int) replaces the default Employee().

– The subclasses' default constructors are now trying to call

a non-existent default Employee constructor.

Calling superclass constructor

 super(parameters);

–Example:
 public class Lawyer extends Employee {

 public Lawyer(int years) {

 super(years); // calls Employee constructor

 }

 ...

 }

– The super call must be the first statement in the constructor.

– Exercise: Make a similar modification to the Marketer class.

Modified Marketer class
// A class to represent marketers.

public class Marketer extends Employee {

 public Marketer(int years) {

 super(years);

 }

 public void advertise() {

 System.out.println("Act now while supplies last!");

 }

 public double getSalary() {

 return super.getSalary() + 10000.0;

 }

}

– Exercise: Modify the Secretary subclass.

• Secretaries' years of employment are not tracked.

• They do not earn extra vacation for years worked.

Modified Secretary class

// A class to represent secretaries.

public class Secretary extends Employee {

 public Secretary() {

 super(0);

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

– Since Secretary doesn't require any parameters to its

constructor, LegalSecretary compiles without a constructor.

• Its default constructor calls the Secretary() constructor.

Inheritance and fields

Inheritance and fields
• Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

 ...

 public double getSalary() {

 return super.getSalary() + 5000 * years;

 }

 ...

}

• Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee

 return super.getSalary() + 5000 * years;

 ^

• Private fields cannot be directly accessed from subclasses.

– One reason: So that subclassing can't break encapsulation.

– How can we get around this limitation?

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}

public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

Revisiting Secretary

• The Secretary class currently has a poor solution.

– We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

– If we call getYears on a Secretary object, we'll always
get 0.

– This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

• Redesign our Employee class to allow for a better solution.

Improved Employee code

• Let's separate the standard 10 vacation days from those that
are awarded based on seniority.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getVacationDays() {
 return 10 + getSeniorityBonus();
 }

 // vacation days given for each year in the company
 public int getSeniorityBonus() {
 return 2 * years;
 }
 ...
}

– How does this help us improve the Secretary?

Improved Secretary code

• Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.

– Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {

 public Secretary(int years) {

 super(years);

 }

 // Secretaries don't get a bonus for their years of service.

 public int getSeniorityBonus() {

 return 0;

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

The Object class

The Object Class

• Every class in Java is descended from the
java.lang.Object class

• Therefore it is important to be familiar with
the methods available in the Object class so
that you can use them in your classes

– Study the Object class’s methods from the Java

API documentation

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

Marketer

Employee

Secretary Lawyer

LegalSecretary

Object variables

• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

Object o3 = new Scanner(System.in);

• An Object variable only knows how to do general things.

String s = o1.toString(); // ok

int len = o2.length(); // error

String line = o3.nextLine(); // error

• You can write methods that accept an Object parameter.

public void checkForNull(Object o) {

 if (o == null) {

 throw new IllegalArgumentException();

 }

}

Comparing objects

• The == operator does not work well with objects.

 == compares references to objects, not their state.

 It only produces true when you compare an object to itself.

 Point p1 = new Point(5, 3);

 Point p2 = new Point(5, 3);

 if (p1 == p2) { // false

 System.out.println("equal");

 }

...

x 5 y 3
p1

p2

...

x 5 y 3

The equals method

• The equals method compares the state of objects.

 if (str1.equals(str2)) {

 System.out.println("the strings are

equal");

 }

• But if you write a class, its equals method behaves like ==

 if (p1.equals(p2)) { // false :-(

 System.out.println("equal");

 }

– This is the behavior we inherit from class Object.

– Java doesn't understand how to compare Points by default.

equals and Object

 public boolean equals(Object name) {

 statement(s) that return a boolean value ;

 }

– The parameter to equals must be of type Object.

– Object is a general type that can match any object.

– Having an Object parameter means any object can be passed.

• If we don't know what type it is, how can we compare it?

• Another flawed equals implementation:

 public boolean equals(Object o) {

 return x == o.x && y == o.y;

 }

• It does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

 ^

– The compiler is saying,

"o could be any object. Not every object has an x field."

Type-casting objects

• Solution: Type-cast the object parameter to a Point.

 public boolean equals(Object o) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

 }

• Casting objects is different than casting primitives.

– Really casting an Object reference into a Point reference.

– Doesn't actually change the object that was passed.

– Tells the compiler to assume that o refers to a Point object.

Casting objects diagram

• Client code:
 Point p1 = new Point(5, 3);

 Point p2 = new Point(5, 3);

 if (p1.equals(p2)) {

 System.out.println("equal");

 }

public boolean equals(Object o) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

}

x 5 y 3

p1

p2

...

x 5 y 3

o

other

Comparing different types

 Point p = new Point(7, 2);

 if (p.equals("hello")) { // should be false

 ...

 }

– Currently our method crashes on the above code:

 Exception in thread "main"

 java.lang.ClassCastException: java.lang.String

 at Point.equals(Point.java:25)

 at PointMain.main(PointMain.java:25)

– The culprit is the line with the type-cast:

 public boolean equals(Object o) {

 Point other = (Point) o;

The instanceof keyword

 if (variable instanceof type) {

 statement(s);

 }

• Asks if a variable refers
to an object of a given type.

– Used as a boolean test.

String s = "hello";

Point p = new Point();

expression result

s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof String false

null instanceof Object false

Final equals method

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

 if (o instanceof Point) {

 // o is a Point; cast and compare it

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else {

 // o is not a Point; cannot be equal

 return false;

 }

}

Abstract Class

Abstract Classes

• As you move up the inheritance hierarchy, classes become

more general and probably more abstract.

• At some point, the ancestor class becomes so general that you

think of it more as a basis for other classes than as a class with

specific instances you want to use.

Abstract Class GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

#GeometricObject()
#GeometricObject(color: String, filled:
boolean)
+getColor() : String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

Circle

-radius: double

+Circle()
+Circle(radius: double)
+Circle(radius: double, color: String, filled:
boolean)
+getRadius(): double
+setRadius(radius: double): void
+getDiameter(): double

Rectangle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)
+Rectangle(width: double, height: double,
color: String, filled: boolean)
+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void

superclass

subclass subclass

Abstract method are

italized

sign

indicates

protected

modifiers

public abstract class GeometricObject {

 private String color = "white";

 private boolean filled;

 private java.util.Date dateCreated;

 /** Construct a default geometric object */

 protected GeometricObject() {

 dateCreated = new java.util.Date();

 }

 /** Construct a geometric object with the specified color

 * and filled value */

 protected GeometricObject(String color, boolean filled) {

 this.color = color;

 this.filled = filled;

 }

 /** Return color */

 public String getColor() { return color; }

 public void setColor(String color) { this.color = color; }

 public boolean isFilled() { return filled; }

 public void setFilled(boolean filled) { this.filled = filled; }

 public java.util.Date getDateCreated() { return dateCreated; }

 public String toString() {
 return "created on " + dateCreated + "\ncolor: " + color +

 " and filled: " + filled;

 }

 /** Abstract method getArea */

 public abstract double getArea();

 /** Abstract method getPerimeter */

 public abstract double getPerimeter();

}

public class Circle extends GeometricObject {

 private double radius;

 public Circle() { }

 public Circle(double radius) {

 this.radius = radius;

 }

 public Circle(double radius, String color, boolean filled) {

 this.radius = radius;

 setColor(color);

 setFilled(filled);

 }

 public double getRadius() {

 return radius;

 }

 public void setRadius(double radius) {

 this.radius = radius;

 }

 public double getDiameter() {

 return 2 * radius;

 }

 public double getArea() {

 return radius * radius * Math.PI;

 } public double getPerimeter() {

 return 2 * radius * Math.PI;

 }

 public void printCircle() {

 System.out.println("The circle is created " + getDateCreated() +

 " and the radius is " + radius);

 }

}

public class Rectangle extends GeometricObject {

 private double width;

 private double height;

 public Rectangle() { }

 public Rectangle(double width, double height) {

 this.width = width;

 this.height = height;

 }

 public Rectangle(double width, double height, String color, boolean filled) {

 this(width, height);

 setColor(color);

 setFilled(filled);

 }

 public double getWidth() { return width; }

 public void setWidth(double width) { this.width = width; }

 public double getHeight() { return height; }

 public void setHeight(double height) { this.height = height; }

 public double getArea() {

 return width * height;

 }

 public double getPerimeter() {

 return 2 * (width + height);

 }

}

public class TestGeometricObject

{

 public static void main(String[] args)

 {

 // create two geometric objects

 GeometricObject geoObject1 = new Circle(5);

 GeometricObject geoObject2 = new Rectangle(5, 3);

 System.out.println("The two objects have the same area? " +

 equalArea(geoObject1, geoObject2));

 displayGeometricObject(geoObject1);

 displayGeometricObject(geoObject2);

 }

 public static boolean equalArea(GeometricObject object1,

 GeometricObject object2)

 {

 return object1.getArea() == object2.getArea();

 }

 public static void displayGeometricObject(GeometricObject object)

 {

 System.out.println();

 System.out.println("The area is " + object.getArea());

 System.out.println("The perimeter is " + object.getPerimeter());

 }

}

Interesting Points on Abstract Classes

• An abstract method cannot be contained in a
non-abstract class

• An abstract class cannot be instantiated using the new
operator

• A class that contains abstract method must be abstract

• An abstract class can be used as a data type

 GeometricObject[] objects = new GeometricObject[5];

 objects[0] = new Circle();

 objects[1] = new Rectangle();

 objects[2] = new Circle();

II. Polymorphism

Polymorphism

– Types of Polymorphism

– Implementation mechanism

– Coding with Polymorphism

–Method parameters

–Array

–Common usage pattern

–Casting Reference

Polymorphism

• polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

– System.out.println can print any type of object.

• Each one displays in its own way on the console.

– EmployeeMain can interact with any type of emplyee.

• Each one is paid in different way.

Type of Polymorphism

– Coercion (implicit type conversion)

E.g. int a = 10;
 double d1 = 9.0;

 double d2 = a / d1; // a is coerced to double

– Overloading
same operator symbol or method name can be used in
different contexts.

 E.g. + can be used to perform integer division, floating-point division, or

string concatenation, depending on the types of its operands.

– Subtype

 When a subtype instance appears in a supertype context,
executing a supertype operation on the subtype instance
results in the subtype’s version of that operation executing.

 * Java supports subtype polymorphism via inheritance and
interfaces

Type of Polymorphism

– Parametric

 Within a class declaration, a field name can associate with
different types and a method name can associate with different
parameter and return types.

* Java supports parametric polymorphism via generics

Type of Polymorphism

Subtype Polymorphism
// File TestGeo
public class TestGeo
{
 public static void main(String[] args)
 {
 GeometricObject[] gobjs = new GeometricObject[] {new Circle(),
 new Rectangle(), new GeometricObject()};

 for (GeometricObject g : gobjs)
 g.draw();
 }
}

// File: GeometricObject.java

public class GeometricObject

{

 void draw() { System.out.println("Geo"); }

}

class Circle extends GeometricObject

{

 void draw() { System.out.println("Circle"); }

}

class Rectangle extends GeometricObject

{

 void draw() { System.out.println("Rectangle"); }

}

Subtype Polymorphism is
made possible by
 - Upcasting
 - Method Overriding
 - Dynamic Binding

* Dynamic Binding :

the method being called upon an object is looked up by name at runtime

Upcasting

• Inheritance enables a subclass to inherit features
from its superclass

• A class defines a type

– Superclass  supertype

– Subclass  subtype

GeometricObject

Circle Rectangle

Every instance of a subclass is also an

instance of its superclass,but not vice versa
E.g. every circle is a geometric object, but not

every geometric object is a circle

Upcasting:
GeometricObject G = new Circle(); // OK

But,

Circle C = new GeometricObject(); // ERROR!

Coding with polymorphism

• A variable of type T can hold an object of any subclass of T.

 Employee ed = new Lawyer();

–You can call any methods from the Employee
class on ed.

• When a method is called on ed, it behaves
as a Lawyer.

 System.out.println(ed.getSalary()); // 50000.0

 System.out.println(ed.getVacationForm()); // pink

Polymorphism and parameters

• You can pass any subtype of a parameter's type.

public class EmployeeMain {

 public static void main(String[] args) {

 Lawyer lisa = new Lawyer();

 Secretary steve = new Secretary();

 printInfo(lisa);

 printInfo(steve);

 }

 public static void printInfo(Employee empl) {

 System.out.println("salary: " + empl.getSalary());

 System.out.println("v.days: " +
empl.getVacationDays());

 System.out.println("v.form: " +
empl.getVacationForm());

 System.out.println();

 }

}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

Polymorphism and arrays
• Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
 public static void main(String[] args) {
 Employee[] e = { new Lawyer(), new Secretary(),
 new Marketer(), new LegalSecretary() };

 for (int i = 0; i < e.length; i++) {
 System.out.println("salary: " + e[i].getSalary());
 System.out.println("v.days: " +
 e[i].getVacationDays());
 System.out.println();
 }
 }
}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Polymorphism problems

• 4-5 classes with inheritance relationships are shown.

• A client program calls methods on objects of each class.

• You must read the code and determine the client's output.

A polymorphism problem
• Suppose that the following four classes have been declared:

public class Foo {

 public void method1() {

 System.out.println("foo 1");

 }

 public void method2() {

 System.out.println("foo 2");

 }

 public String toString() {

 return "foo";

 }

}

public class Bar extends Foo {

 public void method2() {

 System.out.println("bar 2");

 }

}

public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }

 public String toString() {
 return "baz";
 }
}

public class Mumble extends Baz {
 public void method2() {
 System.out.println("mumble 2");
 }
}

• What would be the output of the following client code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new
Foo()};

for (int i = 0; i < pity.length; i++) {

 System.out.println(pity[i]);

 pity[i].method1();

 pity[i].method2();

 System.out.println();

}

• Add classes from top (superclass) to bottom (subclass).

• Include all inherited methods.

Diagramming the classes

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Polymorphism answer
Foo[] pity = {new Baz(),new Bar(),new Mumble(),new Foo()};

for (int i = 0; i < pity.length; i++) {
 System.out.println(pity[i]);
 pity[i].method1();
 pity[i].method2();
 System.out.println();

}

• Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

Casting references
• A variable can only call that type's methods, not a subtype's.

 Employee ed = new Lawyer();

 int hours = ed.getHours(); // ok; it's in

Employee

 ed.sue(); // compiler error

– The compiler's reasoning is, variable ed could store any kind of

employee, and not all kinds know how to sue .

• To use Lawyer methods on ed, we can type-cast it.
 Lawyer theRealEd = (Lawyer) ed;

 theRealEd.sue(); // ok

 ((Lawyer) ed).sue(); // shorter version

More about casting

• The code crashes if you cast an object too far down the tree.

 Employee eric = new Secretary();

 ((Secretary) eric).takeDictation("hi"); // ok

 ((LegalSecretary) eric).fileLegalBriefs(); // exception

 //(Secretary object doesn't know how to file briefs)

• You can cast only up and down the tree, not sideways.

 Lawyer linda = new Lawyer();

 ((Secretary) linda).takeDictation("hi"); // error

• Casting doesn't actually change the object's behavior.

It just gets the code to compile/run.

 ((Employee) linda).getVacationForm() // pink (Lawyer's)

III. Interfaces

Relatedness of types

Write a set of Circle, Rectangle, and Triangle classes.

• Certain operations that are common to all shapes.

 perimeter - distance around the outside of the shape

 area - amount of 2D space occupied by the

shape

• Every shape has them but computes them differently.

Shape area, perimeter

• Rectangle (as defined by width w and height h):

 area = w h

 perimeter = 2w + 2h

• Circle (as defined by radius r):

 area = ππr2

 perimeter = 2π r

• Triangle (as defined by side lengths a, b, and c)

 area = √(s (s - a) (s - b) (s - c))

 where s = ½ (a + b + c)

 perimeter = a + b + c

Common behavior

• Write shape classes with methods perimeter and area.

• We'd like to be able to write client code that treats
different kinds of shape objects in the same way, such as:

– Write a method that prints any shape's area and
perimeter.

– Create an array of shapes that could hold a mixture of
the various shape objects.

– Write a method that could return a rectangle, a circle, a
triangle, or any other shape we've written.

– Make a DrawingPanel display many shapes on
screen.

Interfaces
• interface: A list of methods that a class can implement.

– Inheritance gives you an is-a relationship and
code-sharing.

• A Lawyer object can be treated as an Employee, and
Lawyer inherits Employee's code.

– Interfaces give you an is-a relationship without
code sharing.

• A Rectangle object can be treated as a Shape.

Declaring an interface
public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
}

Example:

public interface Vehicle {
 public double speed();
 public void setDirection(int direction);
}

• abstract method: A header without an implementation.

– The actual body is not specified, to allow/force different classes to
implement the behavior in its own way.

Shape interface

 public interface Shape {

 public double area();

 public double perimeter();

 }

– This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)

Implementing an interface
 public class name implements interface {
 ...

 }

– Example:
 public class Bicycle implements Vehicle
{

 ...

 }

• A class can declare that it implements an interface.

– This means the class must contain each of the abstract
methods in that interface. (Otherwise, it will not compile.)

Interface requirements

• If a class claims to be a Shape but doesn't implement the area
and perimeter methods, it will not compile.

– Example:

 public class Banana implements Shape {

 ...

 }

– The compiler error message:

 Banana.java:1: Banana is not abstract and

does not override abstract method area() in

Shape

 public class Banana implements Shape {

 ^

Complete Circle class

// Represents circles.
public class Circle implements Shape {
 private double radius;

 // Constructs a new circle with the given radius.
 public Circle(double radius) {
 this.radius = radius;
 }

 // Returns the area of this circle.
 public double area() {
 return Math.PI * radius * radius;
 }

 // Returns the perimeter of this circle.
 public double perimeter() {
 return 2.0 * Math.PI * radius;
 }
}

Complete Rectangle class

// Represents rectangles.
public class Rectangle implements Shape {
 private double width;
 private double height;

 // Constructs a new rectangle with the given dimensions.
 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 // Returns the area of this rectangle.
 public double area() {
 return width * height;
 }

 // Returns the perimeter of this rectangle.
 public double perimeter() {
 return 2.0 * (width + height);
 }
}

Complete Triangle class
// Represents triangles.
public class Triangle implements Shape {
 private double a;
 private double b;
 private double c;

 // Constructs a new Triangle given side lengths.
 public Triangle(double a, double b, double c) {
 this.a = a;
 this.b = b;
 this.c = c;
 }

 // Returns this triangle's area using Heron's formula.
 public double area() {
 double s = (a + b + c) / 2.0;
 return Math.sqrt(s * (s - a) * (s - b) * (s - c));
 }

 // Returns the perimeter of this triangle.
 public double perimeter() {
 return a + b + c;
 }
}

Interface & Polymorphism

Interfaces + polymorphism
• Interfaces don't benefit the class so much as the client.

– Interface's is-a relationship lets the client use polymorphism.

 public static void printInfo(Shape s) {
 System.out.println("The shape: " + s);
 System.out.println("area : " + s.area());
 System.out.println("perim: " + s.perimeter());
 }

– Any object that implements the interface may be passed.

 Circle circ = new Circle(12.0);

 Rectangle rect = new Rectangle(4, 7);

 Triangle tri = new Triangle(5, 12, 13);

 printInfo(circ);

 printInfo(tri);

 printInfo(rect);

 Shape[] shapes = {tri, circ, rect};

Interface diagram

• Arrow goes up from class to interface(s) it implements.

– There is a supertype-subtype relationship here;
e.g., all Circles are Shapes, but not all Shapes are Circles.

– This kind of picture is also called a UML class diagram.

