
13016211 Advanced Object Oriented Programming

1

Lecture 6

OOP Techniques for Software Reuse

Object-oriented programming makes possible a level of software reuse that is much more powerful

than that permitted by prior software construction techniques. In this lecture, we will investigate

two most common mechanisms for software reuse: inheritance and composition.

1. Inheritance in Java

In Java, the OOP concept of inheritance is implemented by two different mechanisms:

sub-classification and interfaces.

 Sub-classification (i.e. class A extends B) is a mechanism for relating two classes that share a

structure or code. By defining a class as a subclass (or an extension) of an existing class, the

programmer means that all the public and protected properties of the original class are also now

part of the new class. In addition, the new class can add new data fields and behaviors, and can

override methods of the original class. We can think of sub-classification as inheritance of code.

 Interface is a way of describing what classes should do without specifying how they should

do it. A class can implement one or more interfaces. Interface is a means to ensure that classes

satisfy certain behavior. An interface defines the names and arguments for member functions but

does not provide an implementation. A class that declares itself as implementing an interface must

then provide an implementation for these operations. A method can insist that an argument

implement certain functionality, by declaring the argument using the interface as a type.

Examples 1: sub-classification

1: public class EmployeeTest {
2: public static void main(String[] args) {
3: Employee e1 = new Employee(1, "Kulwadee");
4: System.out.println("id: " + e1.getEmployeeId());
5: System.out.println("name: " + e1.getName());
6: }
7: }
8:
9: public class Employee extends Person {
10: public Employee(int empid, String name) {
11: super(name); // call the constructor of the parent class (i.e. class Person)
12: employee_id = empid;
13: }
14: public int getEmployeeId() { return employee_id; }
15: private String employee_id;
16: }
17:
18: public class Person {
19: public Person(String name) { this.name = name; }
20: public String getName() { return name; }
21: private String name;
22: }

13016211 Advanced Object Oriented Programming

2

Examples 2: interface

1: // EmployeeSortTest.java
2: import java.util.Arrays;
3: public class EmployeeSortTest {
4: public static void main(String[] args) {
5: Employee[] staff = new Employee[3];
6: staff[0] = new Employee(9, "Harry");
7: staff[1] = new Employee(10, "Tony");
8: staff[2] = new Employee(8, "Jane");
9:
10: Arrays.sort(staff);
11:
12: for (Employee e: staff)
13: System.out.println("id=" + e.getEmployeeId() +
14: ",name=" + e.getName());
15:
16: }
17: }
18:
19: // Employee.java
20: public class Employee implements Comparable<Employee>
21: {
22: public Employee(int empid, String name) {
23: employee_id = empid;
24: this.name = name;
25: }
26:
27: public String getName() { return name; }
28: public int getEmployeeId() { return employee_id; }
29:
30: /**
31: * compareTo:
32: * implementation for the compareTo method of
33: * the Comparable interface.
34: * Compares employees by employee_id
35: * @param other another Employee object
36: * @return a negative value if this employee's employee_id
37: * is less than employee_id of the other object,
38: * zero if the employee_ids are the same,
39: * a positive value otherwise
40: */
41: public int compareTo(Employee other)
42: {
43: return Integer.compare(employee_id, other.employee_id);
44: }
45:
46: private int employee_id;
47: private String name;
48: }

13016211 Advanced Object Oriented Programming

3

2. Substitutability

 Inheritance is closely related to the principle of substitutability. A variable that is declared as

one class can be assigned a value that is created from a child class. Substitutability, in Java, can occur

either through the use of sub-classification or through the use of interface.

Example 3 substitutability through sub-classification

 Person[] manyPersons = new Person[2];

 manyPersons[0] = new Person(“A”);

 manyPersons[1] = new Employee(2, “B”);

 for (Person p : manyPersons)

 System.out.println(p.getName());

Example 4 substitutability through interface

1: // PersonTest.java
2: public class PersonTest {
3: public static void main(String[] args) {
4: PersonDirectory pd = new PersonDirectory();
5: Student s1 = new Student(1, "first", 18);
6: Student s2 = new Student(2, "second", 19);
7: Teacher t1 = new Teacher("teacher1", 29, 2);
8: System.out.println("insert s1 at index " + pd.insert(s1));
9: System.out.println("insert t1 at index " + pd.insert(t1));
10: System.out.println("insert s2 at index " + pd.insert(s2));
11: pd.showDirectory();
12: System.out.print("s2 is at index 1? ");
13: System.out.println(pd.samePerson(s2, 1));
14: System.out.print("t1 is at index 1? ");
15: System.out.println(pd.samePerson(t1, 1));
16: }
17: }
18: class PersonDirectory {
19: public int insert(Person p) {
20: if (idx+1 < CAPACITY) {
21: pArray[++idx] = p;
22: return idx;
23: } else {
24: return -1;
25: }
26: }
27:
28: public void showDirectory() {
29: for (int i = 0; i < idx; i++) {
30: Person p = pArray[i];
31: System.out.println("name=" + p.getName() +
32: ", age=" + p.getAge());

13016211 Advanced Object Oriented Programming

4

33: }
34: }
35:
36: public boolean samePerson(Person other, int thisPersonIndex) {
37: return pArray[thisPersonIndex].equalTo(other);
38: }
39:
40: public static final int CAPACITY = 10;
41: private Person[] pArray = new Person[CAPACITY];
42: private int idx = -1;
43: }
44:
45: // Person.java
46: public interface Person {
47: public boolean equalTo(Person other);
48: public String getName();
49: public int getAge();
50: }
51:
52: // Student.java
53: public class Student implements Person {
54: public Student(int i, String n, int a) {
55: id = i;
56: name = n;
57: age = a;
58: }
59: public int getId() { return id; }
60:
61: // implements the Person interface
62: public String getName() { return name; }
63: public int getAge() { return age; }
64: public boolean equalTo(Person other) {
65: if (other instanceof Student) {
66: Student otherStudent = (Student)other;
67: return id == otherStudent.id;
68: } else
69: return false;
70: }
71:
72: private String name;
73: private int id;
74: private int age;
75: }
76:
77: // Teacher.java
78: public class Teacher implements Person {
79: public Teacher(String n, int a, int y) {
80: name = n;
81: age = a;
82: workYear = y;
83: }

13016211 Advanced Object Oriented Programming

5

3. Composition

Composition is a technique of including user-defined object types as part of a newly defined

object. We can think of composition as a manifestation of the has-a relationship.

The has-a relationship holds when one object type is a component of another object type

but the two are not in any sense the same thing. For example,

1. a Car has-a Engine

2. a Country has-a Province

3. a Stack has-a Data container

4. Composition and Inheritance for Software Reuse

 We will illustrate the two mechanisms of software reuse by studying the implementations of

a stack abstract data type. Recall that a stack is an ADT that allows elements to be added or removed

from one end only. In this lecture, we will show two ways to reuse the java.util.Vector class in the

implementations of a stack abstract data type.

1. Composition: define a data member of type java.util.Vector in the Stack class

2. Inheritance: define the Stack class as a subclass of the java.util.Vector

The two implementations are shown below.

84: public int getWorkYear() { return workYear; }
85:
86: // implements the Person interface
87: public boolean equalTo(Person other) {
88: if (other instanceof Teacher) {
89: Teacher otherTeacher = (Teacher)other;
90: return workYear == otherTeacher.workYear;
91: }
92: else
93: return false;
94:
95: }
96: public String getName() { return name; }
97: public int getAge() { return age; }
98:
99: private String name;
100: private int age;
101: private int workYear;
102: }

13016211 Advanced Object Oriented Programming

6

5. Group Discussion Question

Study the two implementations of the stack ADT, describe the advantages and

disadvantages of the two approaches (composition vs. inheritance).

1: // composition (a stack has-a Vector object)
2: public class Stack {
3: private Vector theData;
4: public Stack()
5: { theData = new Vector(); }
6: public boolean empty()
7: { return theData.isEmpty(); }
8: public Object push(Object item)
9: { theData.addElement (item); return item; }
10: public Object peek()
11: { return theData.lastElement(); }
12: public Object pop() {
13: Object result = theData.lastElement();
14: theData.removeElementAt(theData.size()-1);
15: return result;
16: }
17: }

1: // inheritance (a stack is-a Vector object)
2: public class Stack extends Vector {
3: public Object push(Object item)
4: { addElement(item); return item; }
5: public Object peek()
6: { return elementAt(size() - 1); }
7: public Object pop() {
8: Object obj = peek();
9: removeElementAt(size()-1);
10: return obj;
11: }
12: }

